forked from rosinality/stylegan2-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
88eccc5
commit 817152e
Showing
6 changed files
with
193 additions
and
5 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
File renamed without changes
File renamed without changes
0
stylegan2-ffhq-config-f.png → doc/stylegan2-ffhq-config-f.png
100644 → 100755
File renamed without changes
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,180 @@ | ||
import argparse | ||
import math | ||
import os | ||
|
||
import torch | ||
from torch import optim | ||
from torch.nn import functional as F | ||
from torchvision import transforms | ||
from PIL import Image | ||
from tqdm import tqdm | ||
|
||
import lpips | ||
from model import Generator | ||
|
||
|
||
def noise_regularize(noises): | ||
loss = 0 | ||
|
||
for noise in noises: | ||
size = noise.shape[2] | ||
|
||
while True: | ||
loss = loss + (noise * torch.roll(noise, shifts=1, dims=3)).mean().pow(2) \ | ||
+ (noise * torch.roll(noise, shifts=1, dims=2)).mean().pow(2) | ||
|
||
if size <= 8: | ||
break | ||
|
||
noise = noise.reshape([1, 1, size // 2, 2, size // 2, 2]) | ||
noise = noise.mean([3, 5]) | ||
size //= 2 | ||
|
||
return loss | ||
|
||
|
||
def noise_normalize_(noises): | ||
for noise in noises: | ||
mean = noise.mean() | ||
std = noise.std() | ||
|
||
noise.data.add_(-mean).div_(std) | ||
|
||
|
||
def get_lr(t, initial_lr, rampdown=0.25, rampup=0.05): | ||
lr_ramp = min(1, (1 - t) / rampdown) | ||
lr_ramp = 0.5 - 0.5 * math.cos(lr_ramp * math.pi) | ||
lr_ramp = lr_ramp * min(1, t / rampup) | ||
|
||
return initial_lr * lr_ramp | ||
|
||
|
||
def latent_noise(latent, strength): | ||
noise = torch.randn_like(latent) * strength | ||
|
||
return latent + noise | ||
|
||
|
||
def make_image(tensor): | ||
return tensor.detach().clamp_(min=-1, max=1).add(1).div_(2).mul(255) \ | ||
.type(torch.uint8).permute(0, 2, 3, 1).to('cpu').numpy() | ||
|
||
|
||
if __name__ == '__main__': | ||
device = 'cuda' | ||
|
||
parser = argparse.ArgumentParser() | ||
parser.add_argument('--ckpt', type=str, required=True) | ||
parser.add_argument('--size', type=int, default=256) | ||
parser.add_argument('--lr_rampup', type=float, default=0.05) | ||
parser.add_argument('--lr_rampdown', type=float, default=0.25) | ||
parser.add_argument('--lr', type=float, default=0.1) | ||
parser.add_argument('--noise', type=float, default=0.05) | ||
parser.add_argument('--noise_ramp', type=float, default=0.75) | ||
parser.add_argument('--step', type=int, default=1000) | ||
parser.add_argument('--noise_regularize', type=float, default=1e5) | ||
parser.add_argument('--mse', type=float, default=0) | ||
parser.add_argument('--w_plus', action='store_true') | ||
parser.add_argument('files', metavar='FILES', nargs='+') | ||
|
||
args = parser.parse_args() | ||
|
||
n_mean_latent = 10000 | ||
|
||
resize = min(args.size, 256) | ||
|
||
transform = transforms.Compose([transforms.Resize(resize), | ||
transforms.CenterCrop(resize), | ||
transforms.ToTensor(), | ||
transforms.Normalize([0.5, 0.5, 0.5], | ||
[0.5, 0.5, 0.5])]) | ||
|
||
imgs = [] | ||
|
||
for imgfile in args.files: | ||
img = transform(Image.open(imgfile).convert('RGB')) | ||
imgs.append(img) | ||
|
||
imgs = torch.stack(imgs, 0).to(device) | ||
|
||
g_ema = Generator(args.size, 512, 8) | ||
g_ema.load_state_dict(torch.load(args.ckpt)['g_ema']) | ||
g_ema.eval() | ||
g_ema = g_ema.to(device) | ||
|
||
with torch.no_grad(): | ||
noise_sample = torch.randn(n_mean_latent, 512, device=device) | ||
latent_out = g_ema.style(noise_sample) | ||
|
||
latent_mean = latent_out.mean(0) | ||
latent_std = ((latent_out - latent_mean).pow(2).sum() / n_mean_latent) ** 0.5 | ||
|
||
percept = lpips.PerceptualLoss(model='net-lin', net='vgg', use_gpu=device.startswith('cuda')) | ||
|
||
noises = g_ema.make_noise() | ||
|
||
latent_in = latent_mean.detach().clone().unsqueeze(0).repeat(2, 1) | ||
|
||
if args.w_plus: | ||
latent_in.unsqueeze(1).repeat(1, g_ema.n_latent, 1) | ||
|
||
latent_in.requires_grad = True | ||
|
||
for noise in noises: | ||
noise.requires_grad = True | ||
|
||
optimizer = optim.Adam([latent_in] + noises, lr=args.lr) | ||
|
||
pbar = tqdm(range(args.step)) | ||
latent_path = [] | ||
|
||
for i in pbar: | ||
t = i / args.step | ||
lr = get_lr(t, args.lr) | ||
optimizer.param_groups[0]['lr'] = lr | ||
noise_strength = latent_std * args.noise * max(0, 1 - t / args.noise_ramp) ** 2 | ||
latent_n = latent_noise(latent_in, noise_strength.item()) | ||
|
||
img_gen, _ = g_ema([latent_n], input_is_latent=True, noise=noises) | ||
|
||
batch, channel, height, width = img_gen.shape | ||
|
||
if height > 256: | ||
factor = height // 256 | ||
|
||
img_gen = img_gen.reshape(batch, channel, height // factor, factor, width // factor, factor) | ||
img_gen = img_gen.mean([3, 5]) | ||
|
||
p_loss = percept(img_gen, imgs).sum() | ||
n_loss = noise_regularize(noises) | ||
mse_loss = F.mse_loss(img_gen, imgs) | ||
|
||
loss = p_loss + args.noise_regularize * n_loss + args.mse * mse_loss | ||
|
||
optimizer.zero_grad() | ||
loss.backward() | ||
optimizer.step() | ||
|
||
noise_normalize_(noises) | ||
|
||
if (i + 1) % 100 == 0: | ||
latent_path.append(latent_in.detach().clone()) | ||
|
||
pbar.set_description((f'perceptual: {p_loss.item():.4f}; noise regularize: {n_loss.item():.4f};' | ||
f' mse: {mse_loss.item():.4f}; lr: {lr:.4f}')) | ||
|
||
result_file = {'noises': noises} | ||
|
||
img_gen, _ = g_ema([latent_path[-1]], input_is_latent=True, noise=noises) | ||
|
||
filename = os.path.splitext(os.path.basename(args.files[0]))[0] + '.pt' | ||
|
||
img_ar = make_image(img_gen) | ||
|
||
for i, input_name in enumerate(args.files): | ||
result_file[input_name] = {'img': img_gen[i], 'latent': latent_in[i]} | ||
img_name = os.path.splitext(os.path.basename(input_name))[0] + '-project.png' | ||
pil_img = Image.fromarray(img_ar[i]) | ||
pil_img.save(img_name) | ||
|
||
torch.save(result_file, filename) |