-
Notifications
You must be signed in to change notification settings - Fork 5
/
train_single.py
209 lines (189 loc) · 10.6 KB
/
train_single.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import argparse
import os
import pwd
import sys
import yaml
from datetime import datetime
from pytorch_lightning import Trainer, callbacks, loggers
from src.const import NUMBER_OF_ATOM_TYPES
from src.model_single import DDPM
from src.utils import disable_rdkit_logging, Logger
def find_last_checkpoint(checkpoints_dir):
epoch2fname = [
(int(fname.split('=')[1].split('.')[0]), fname)
for fname in os.listdir(checkpoints_dir)
if fname.endswith('.ckpt')
]
latest_fname = max(epoch2fname, key=lambda t: t[0])[1]
return os.path.join(checkpoints_dir, latest_fname)
def main(args):
start_time = datetime.now().strftime('date%d-%m_time%H-%M-%S.%f')
run_name = f'{os.path.splitext(os.path.basename(args.config))[0]}_{pwd.getpwuid(os.getuid())[0]}_{args.exp_name}_bs{args.batch_size}_{start_time}'
experiment = run_name if args.resume is None else args.resume
checkpoints_dir = os.path.join(args.checkpoints, experiment)
os.makedirs(os.path.join(args.logs, "general_logs", experiment),exist_ok=True)
sys.stdout = Logger(logpath=os.path.join(args.logs, "general_logs", experiment, f'log.log'), syspart=sys.stdout)
sys.stderr = Logger(logpath=os.path.join(args.logs, "general_logs", experiment, f'log.log'), syspart=sys.stderr)
os.makedirs(checkpoints_dir, exist_ok=True)
os.makedirs(args.logs, exist_ok=True)
samples_dir = os.path.join(args.logs, 'samples', experiment)
torch_device = 'cuda:0' if args.device == 'gpu' else 'cpu'
wandb_logger = loggers.WandbLogger(
save_dir=args.logs,
project='diffdec_single',
name=experiment,
id=experiment,
resume='must' if args.resume is not None else 'allow',
entity=args.wandb_entity,
)
number_of_atoms = NUMBER_OF_ATOM_TYPES
in_node_nf = number_of_atoms + args.include_charges
anchors_context = not args.remove_anchors_context
context_node_nf = 2 if anchors_context else 1
if '.' in args.train_data_prefix:
context_node_nf += 1
ddpm = DDPM(
data_path=args.data,
train_data_prefix=args.train_data_prefix,
val_data_prefix=args.val_data_prefix,
in_node_nf=in_node_nf,
n_dims=3,
context_node_nf=context_node_nf,
hidden_nf=args.nf,
activation=args.activation,
n_layers=args.n_layers,
attention=args.attention,
tanh=args.tanh,
norm_constant=args.norm_constant,
inv_sublayers=args.inv_sublayers,
sin_embedding=args.sin_embedding,
normalization_factor=args.normalization_factor,
aggregation_method=args.aggregation_method,
diffusion_steps=args.diffusion_steps,
diffusion_noise_schedule=args.diffusion_noise_schedule,
diffusion_noise_precision=args.diffusion_noise_precision,
diffusion_loss_type=args.diffusion_loss_type,
normalize_factors=args.normalize_factors,
include_charges=args.include_charges,
lr=args.lr,
batch_size=args.batch_size,
torch_device=torch_device,
model=args.model,
test_epochs=args.test_epochs,
n_stability_samples=args.n_stability_samples,
normalization=args.normalization,
log_iterations=args.log_iterations,
samples_dir=samples_dir,
data_augmentation=args.data_augmentation,
center_of_mass=args.center_of_mass,
inpainting=args.inpainting,
anchors_context=anchors_context,
)
checkpoint_callback = callbacks.ModelCheckpoint(
dirpath=checkpoints_dir,
filename=experiment + '_{epoch:02d}',
monitor='loss/val',
save_top_k=-1,
every_n_epochs=20
)
trainer = Trainer(
max_epochs=args.n_epochs,
logger=wandb_logger,
callbacks=checkpoint_callback,
accelerator=args.device,
devices=1,
num_sanity_val_steps=0,
enable_progress_bar=args.enable_progress_bar,
)
if args.resume is None:
last_checkpoint = None
else:
last_checkpoint = find_last_checkpoint(checkpoints_dir)
print(f'Training will be resumed from the latest checkpoint {last_checkpoint}')
print('Start training')
trainer.fit(model=ddpm, ckpt_path=last_checkpoint)
if __name__ == '__main__':
p = argparse.ArgumentParser(description='E3Diffusion')
p.add_argument('--config', type=argparse.FileType(mode='r'), default='configs/single.yml')
p.add_argument('--data', action='store', type=str, default="datasets")
p.add_argument('--train_data_prefix', action='store', type=str, default='train')
p.add_argument('--val_data_prefix', action='store', type=str, default='val')
p.add_argument('--checkpoints', action='store', type=str, default='checkpoints')
p.add_argument('--logs', action='store', type=str, default='logs')
p.add_argument('--device', action='store', type=str, default='cpu')
p.add_argument('--trainer_params', type=dict, help='parameters with keywords of the lightning trainer')
p.add_argument('--log_iterations', action='store', type=str, default=20)
p.add_argument('--exp_name', type=str, default='YourName')
p.add_argument('--model', type=str, default='egnn_dynamics',help='our_dynamics | schnet | simple_dynamics | kernel_dynamics | egnn_dynamics |gnn_dynamics')
p.add_argument('--probabilistic_model', type=str, default='diffusion', help='diffusion')
# Training complexity is O(1) (unaffected), but sampling complexity is O(steps).
p.add_argument('--diffusion_steps', type=int, default=500)
p.add_argument('--diffusion_noise_schedule', type=str, default='polynomial_2', help='learned, cosine')
p.add_argument('--diffusion_noise_precision', type=float, default=1e-5, )
p.add_argument('--diffusion_loss_type', type=str, default='l2', help='vlb, l2')
p.add_argument('--n_epochs', type=int, default=200)
p.add_argument('--batch_size', type=int, default=128)
p.add_argument('--lr', type=float, default=2e-4)
p.add_argument('--brute_force', type=eval, default=False,help='True | False')
p.add_argument('--actnorm', type=eval, default=True,help='True | False')
p.add_argument('--break_train_epoch', type=eval, default=False,help='True | False')
p.add_argument('--dp', type=eval, default=True,help='True | False')
p.add_argument('--condition_time', type=eval, default=True,help='True | False')
p.add_argument('--clip_grad', type=eval, default=True,help='True | False')
p.add_argument('--trace', type=str, default='hutch',help='hutch | exact')
# EGNN args -->
p.add_argument('--n_layers', type=int, default=6, help='number of layers')
p.add_argument('--inv_sublayers', type=int, default=1, help='number of layers')
p.add_argument('--nf', type=int, default=128, help='number of layers')
p.add_argument('--tanh', type=eval, default=True, help='use tanh in the coord_mlp')
p.add_argument('--attention', type=eval, default=True, help='use attention in the EGNN')
p.add_argument('--norm_constant', type=float, default=1,help='diff/(|diff| + norm_constant)')
p.add_argument('--sin_embedding', type=eval, default=False, help='whether using or not the sin embedding')
p.add_argument('--ode_regularization', type=float, default=1e-3)
p.add_argument('--dataset', type=str, default='crossdock', help='crossdock')
p.add_argument('--datadir', type=str, default='/crossdock/', help='crossdock directory')
p.add_argument('--filter_n_atoms', type=int, default=None, help='')
p.add_argument('--dequantization', type=str, default='argmax_variational', help='uniform | variational | argmax_variational | deterministic')
p.add_argument('--n_report_steps', type=int, default=1)
p.add_argument('--wandb_usr', type=str)
p.add_argument('--no_wandb', action='store_true', help='Disable wandb')
p.add_argument('--enable_progress_bar', action='store_true', help='Disable wandb')
p.add_argument('--online', type=bool, default=True, help='True = wandb online -- False = wandb offline')
p.add_argument('--no-cuda', action='store_true', default=False, help='enables CUDA training')
p.add_argument('--save_model', type=eval, default=True, help='save model')
p.add_argument('--generate_epochs', type=int, default=1,help='save model')
p.add_argument('--num_workers', type=int, default=0, help='Number of worker for the dataloader')
p.add_argument('--test_epochs', type=int, default=1)
p.add_argument('--data_augmentation', type=eval, default=False, help='use attention in the EGNN')
p.add_argument("--conditioning", nargs='+', default=[], help='arguments : homo | lumo | alpha | gap | mu | Cv')
p.add_argument('--resume', type=str, default=None, help='')
p.add_argument('--start_epoch', type=int, default=0, help='')
p.add_argument('--ema_decay', type=float, default=0.999, help='Amount of EMA decay, 0 means off. A reasonable value is 0.999.')
p.add_argument('--augment_noise', type=float, default=0)
p.add_argument('--n_stability_samples', type=int, default=500,help='Number of samples to compute the stability')
p.add_argument('--normalize_factors', type=eval, default=[1, 4, 1], help='normalize factors for [x, categorical, integer]')
p.add_argument('--remove_h', action='store_true')
p.add_argument('--include_charges', type=eval, default=True,help='include atom charge or not')
p.add_argument('--visualize_every_batch', type=int, default=1e8,help="Can be used to visualize multiple times per epoch")
p.add_argument('--normalization_factor', type=float, default=1,help="Normalize the sum aggregation of EGNN")
p.add_argument('--aggregation_method', type=str, default='sum',help='"sum" or "mean"')
p.add_argument('--normalization', type=str, default='batch_norm', help='batch_norm')
p.add_argument('--wandb_entity', type=str, default='geometric', help='Entity (project) name')
p.add_argument('--center_of_mass', type=str, default='scaffold', help='Where to center the data: scaffold | anchors')
p.add_argument('--inpainting', action='store_true', default=False, help='Inpainting mode (full generation)')
p.add_argument('--remove_anchors_context', action='store_true', default=False, help='Remove anchors context')
disable_rdkit_logging()
args = p.parse_args()
if args.config:
config_dict = yaml.load(args.config, Loader=yaml.FullLoader)
arg_dict = args.__dict__
for key, value in config_dict.items():
if isinstance(value, list) and key != 'normalize_factors':
for v in value:
arg_dict[key].append(v)
else:
arg_dict[key] = value
args.config = args.config.name
else:
config_dict = {}
main(args=args)