Skip to content

Commit

Permalink
Adding more links to various categories and sections: NLP, Things to …
Browse files Browse the repository at this point in the history
…know, Visualisation, Time series, Data, Graph and many others. Also links to two new Newsletters.
  • Loading branch information
neomatrix369 committed Jul 16, 2021
1 parent 1866218 commit 7b764b7
Show file tree
Hide file tree
Showing 10 changed files with 110 additions and 30 deletions.
24 changes: 20 additions & 4 deletions README-details.md
Original file line number Diff line number Diff line change
Expand Up @@ -42,14 +42,29 @@
- [Automated machine learning tools (or partial AutoML tools)](./things-to-know.md#automated-machine-learning-tools-or-partial-automl-tools)
- [Automated Machine Learning - Google search results](https://www.google.com/search?ei=b3ktXKfbEqWAjLsPqdOxiAs&q=automated+machine+learning&oq=automated+machine&gs_l=psy-ab.3.0.0j0i20i263j0l5j0i20i263j0l2.187330.192290..193008...3.0..0.70.1100.20......0....1..gws-wiz.....6..35i39j0i131j0i67.2o6PTTxjJjw)
- [Recipes for Driverless AI](https://github.com/h2oai/driverlessai-recipes)
- [PyCaret Tutorial Using Titanic Dataset](https://www.kaggle.com/ravileo/pycaret-tutorial-using-titanic-dataset](https://towardsdatascience.com/announcing-pycaret-an-open-source-low-code-machine-learning-library-in-python-4a1f1aad8d46)
- [PyCaret Demo](https://pycaret.org/demo/](https://github.com/pycaret/pycaret-demo-dataraction)
- [Running Low on Time? Use PyCaret to Build your Machine Learning Model in Seconds](https://www.analyticsvidhya.com/blog/2020/05/pycaret-machine-learning-model-seconds/?utm_source=feed&utm_medium=feed-articles&utm_campaign=feed)
- Libra • Automates the end-to-end machine learning process in just one line of code: [GitHub](https://lnkd.in/g4kYRnq) | [Notebooks with tutorials](https://lnkd.in/g95uKnR) | [Docs](https://lnkd.in/g_vF72M) | [NLP Queries](https://lnkd.in/gZhufPf)
- PyCaret
+ [PyCaret Tutorial Using Titanic Dataset](https://www.kaggle.com/ravileo/pycaret-tutorial-using-titanic-dataset](https://towardsdatascience.com/announcing-pycaret-an-open-source-low-code-machine-learning-library-in-python-4a1f1aad8d46)
+ [PyCaret Demo](https://pycaret.org/demo/](https://github.com/pycaret/pycaret-demo-dataraction)
+ [Write and train your own custom machine learning models using PyCaret](https://towardsdatascience.com/write-and-train-your-own-custom-machine-learning-models-using-pycaret-8fa76237374e)
+ [Running Low on Time? Use PyCaret to Build your Machine Learning Model in Seconds](https://www.analyticsvidhya.com/blog/2020/05/pycaret-machine-learning-model-seconds/?utm_source=feed&utm_medium=feed-articles&utm_campaign=feed)
+ Libra • Automates the end-to-end machine learning process in just one line of code: [GitHub](https://lnkd.in/g4kYRnq) | [Notebooks with tutorials](https://lnkd.in/g95uKnR) | [Docs](https://lnkd.in/g_vF72M) | [NLP Queries](https://lnkd.in/gZhufPf)
- [GitHub is the best AutoML you will ever need 👇 👇 👇](https://www.linkedin.com/posts/profile-moez_github-is-the-best-automl-you-will-ever-need-activity-6696949164791652352-bleJ)
- [AutoGOAL: an autoML framework (high & low level) by Alejandro Piad et al.](https://www.linkedin.com/posts/madewithml_machinelearning-artificialintelligence-madewithml-activity-6693165741547626496-mHhS)
- [OttoML - Otto makes machine learning an intuitive, natural language experience.](https://github.com/KartikChugh/Otto)
- [TPOT for Automated Machine Learning in Python](https://machinelearningmastery.com/tpot-for-automated-machine-learning-in-python/)
- Abacus AI workshops
+ [Classification](https://colab.research.google.com/drive/1Rajb3bHw45k4PWvDlxsQNCd3j5WuHbIm#forceEdit=true&sandboxMode=true&scrollTo=0D9QEgVs6Ni0)
+ [Regression](https://bit.ly/RE_regression)
+ [Forecasting and Recommendations](https://colab.research.google.com/drive/1AnYlxBWo2UUJv5zh7UUbi1YYGwiAmoxl?usp=sharing#scrollTo=__NDm8-bYCqx)
- [Workshop on Explainable ML: The code used to create the Input versus Output visualisation](https://www.youtube.com/watch?v=fGOcvtVaY18)
- [How to Use AutoKeras for Classification and Regression](https://machinelearningmastery.com/autokeras-for-classification-and-regression)
| [AutoKeras Website](https://autokeras.com/)
- Snorkel: Interact with the modern ML stack by programmatically building and managing training datasets: [Snorkel Superglue](https://github.com/HazyResearch/snorkel-superglue) | [Author page](https://ajratner.github.io/)
- [Build machine learning powered applications without a data scientist](https://telepath.io/)
- [A delightful machine learning tool that allows you to train/fit, test and use models without writing code](https://github.com/nidhaloff/igel)
- [Automated Machine Learning (AutoML) Libraries for Python](https://machinelearningmastery.com/automl-libraries-for-python/)
- [Auto sklearn](https://github.com/automl/auto-sklearn)
- [OpenML](https://openml.org)

### Ethics / altruistic motives

Expand Down Expand Up @@ -149,6 +164,7 @@ See [Mathematics, Statistics, Probability & Probabilistic programming](./details
+ [Graph Programming by Uri Valevski https://bit.ly/3nhZr4w](https://www.linkedin.com/posts/towards-data-science_graph-programming-by-uri-valevski-https-activity-6718600830007742464-Ehy5)
+ [Open Graph Benchmark: Datasets for Machine Learning on Graphs -](https://www.linkedin.com/posts/philipvollet_machinelearning-datascience-analytics-activity-6715867835287109633-Y_MN)
- [BCS APSG - 2019 02 14 How Graph Technology is Changing AI and ML at BCS London](https://www.youtube.com/watch?v=oMqP3ISPWBY)
- [Language Generation with Multi-hop Reasoning on Commonsense Knowledge Graph](https://www.linkedin.com/posts/philipvollet_datascience-nlp-pytorch-activity-6734350662294917120-LSsw)
- [Graph databases](./data/README.md#databases)
- See the [Grakn example](./examples/data/databases/graph/grakn/README.md) in the `examples/data/databases/graph/grakn` folder

Expand Down
2 changes: 2 additions & 0 deletions data/databases.md
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,7 @@
- [Universal Invariant and Equivariant Graph Neural Networks](https://www.linkedin.com/posts/eric-feuilleaubois-ph-d-43ab0925_universal-invariant-and-equivariant-graph-activity-6636212749133246464-_xqf)
- [Auto-Generated KG](https://www.linkedin.com/posts/bo-li-8503b896_auto-generated-knowledge-graphs-activity-6637543428051828736-jVdT)
- [Graph Convolutional Neural Networks for Molecule Generation | NTU Graph Deep Learning Lab](https://www.linkedin.com/posts/eric-feuilleaubois-ph-d-43ab0925_graph-convolutional-neural-networks-for-molecule-activity-6640244313009737728-IdCP)
- [Modelling the Time-of-Arrival Using Distributions](https://www.inovex.de/blog/time-of-arrival-distributions/)

## Tools, packages and frameworks
- [PyTorch Geometric Temporal is a temporal (dynamic) extension library for PyTorch Geometric](https://github.com/benedekrozemberczki/pytorch_geometric_temporal)
Expand All @@ -45,6 +46,7 @@
- [GraphScope is a unified distributed graph computing platform](https://www.linkedin.com/posts/philipvollet_datascience-analytics-bigdata-activity-6793219722117820417-vhSv)
- [Tweeki - Linking Named Entities on Twitter to a Knowledge Graph](https://www.linkedin.com/posts/philipvollet_twitter-data-datascience-activity-6733786978178990080-ZiD3)


## Misc.
- [Difference between JOIN and UNION in SQL](https://www.geeksforgeeks.org/difference-between-join-and-union-in-sql/)
- [Difference between COMMIT and ROLLBACK in SQL](https://www.geeksforgeeks.org/difference-between-commit-and-rollback-in-sql/)
Expand Down
30 changes: 7 additions & 23 deletions data/model-analysis-interpretation-explainability.md
Original file line number Diff line number Diff line change
Expand Up @@ -21,29 +21,13 @@
- [What-if-tool on GitHub](https://github.com/PAIR-code/what-if-tool)
- [useR2020! Keynote: "Responsible Automation: Towards Interpretable & Fair AutoML"](https://github.com/ledell/useR2020-automl)
- [Explainable AI by IBM](https://github.com/Trusted-AI/AIX360) | [GitHub](https://github.com/IBM/lale) | [(video, slides, codes) on youtube channel](https://www.youtube.com/channel/UCj09XsAWj-RF9kY4UvBJh_A) | [GitHub](https://github.com/decentdilettante)
SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any machine learning model.
https://www.linkedin.com/posts/philipvollet_machinelearning-datascience-technology-activity-6732555181315227648-NPD1

Intro to Explainable AI
https://www.linkedin.com/posts/activity-6679735518781153280-RewD

Gradio! You can now generate interpretations with one line of code!
https://www.linkedin.com/posts/philipvollet_machinelearning-python-datascience-activity-6730046018248962048-Icgv

LIME for auditing black-box models
https://towardsdatascience.com/lime-for-auditing-black-box-models-b97d6d2580b4?gi=95ed4978e936

Interpretable Machine Learning - Christoph Molnar
https://www.youtube.com/watch?v=0LIACHcxpHU&t=3533s

AI Ethics, Fairness, Explainability: Q&A and discussion at this session:
code lab: https://github.com/decentdilettante/XAI
10:33:08 https://github.com/Trusted-AI/AIX360
10:33:19 https://github.com/IBM/lale
10:39:20 ["Conversational Processes and Causal Explanation" by Hilton:](https://pdfs.semanticscholar.org/5093/4979694fb48e55d0cf38888f67b84ad6601b.pdf

Tech talk: Explainable anomaly detection
https://www.youtube.com/watch?v=0p8o3uj96Uc&feature=push-u-sub&attr_tag=ccXKOv7Gba4BJCOf%3A6
- [SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any machine learning model](https://www.linkedin.com/posts/philipvollet_machinelearning-datascience-technology-activity-6732555181315227648-NPD1)
- [Intro to Explainable AI](https://www.linkedin.com/posts/activity-6679735518781153280-RewD)
- [Gradio! You can now generate interpretations with one line of code!](https://www.linkedin.com/posts/philipvollet_machinelearning-python-datascience-activity-6730046018248962048-Icgv)
- [LIME for auditing black-box models](https://towardsdatascience.com/lime-for-auditing-black-box-models-b97d6d2580b4?gi=95ed4978e936)
- [Interpretable Machine Learning - Christoph Molnar](https://www.youtube.com/watch?v=0LIACHcxpHU&t=3533s)
- AI Ethics, Fairness, Explainability: Q&A and discussion at this session: [code lab](https://github.com/decentdilettante/XAI) | [Trusted-AI](https://github.com/Trusted-AI/AIX360) | [lale](https://github.com/IBM/lale) | ["Conversational Processes and Causal Explanation" by Hilton](https://pdfs.semanticscholar.org/5093/4979694fb48e55d0cf38888f67b84ad6601b.pdf) | [Tech talk: Explainable anomaly detection](https://www.youtube.com/watch?v=0p8o3uj96Uc&feature=push-u-sub&attr_tag=ccXKOv7Gba4BJCOf%3A6)
- [With the library "explainerdashboard" you can visually analyze the predictions of your #ml models](https://www.linkedin.com/posts/inna-vogel-nlp_ml-nlp-ai-activity-6770064375039463424-2LkQ)

## Articles, blog posts, papers, notebooks, books, presentations

Expand Down
9 changes: 8 additions & 1 deletion natural-language-processing/README.md
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
# Natural Language Processing (NLP)

Better NLP: [![Better NLP](https://img.shields.io/docker/pulls/neomatrix369/better-nlp.svg)](https://hub.docker.com/r/neomatrix369/better-nlp)
Better NLP: [![Better NLP](https://i§g.shields.io/docker/pulls/neomatrix369/better-nlp.svg)](https://hub.docker.com/r/neomatrix369/better-nlp)

NLP Java: [![NLP Java](https://img.shields.io/docker/pulls/neomatrix369/nlp-java.svg)](https://hub.docker.com/r/neomatrix369/nlp-java) | NLP Clojure: [![NLP Clojure](https://img.shields.io/docker/pulls/neomatrix369/nlp-clojure.svg)](https://hub.docker.com/r/neomatrix369/nlp-clojure) | NLP Kotlin: [![NLP Kotlin](https://img.shields.io/docker/pulls/neomatrix369/nlp-kotlin.svg)](https://hub.docker.com/r/neomatrix369/nlp-kotlin) | NLP Scala: [![NLP Scala](https://img.shields.io/docker/pulls/neomatrix369/nlp-scala.svg)](https://hub.docker.com/r/neomatrix369/nlp-scala) | <br/>
NLP using DL4J (cuda): [![NLP using DL4J (cuda)](https://img.shields.io/docker/pulls/neomatrix369/dl4j-nlp-cuda.svg)](https://hub.docker.com/r/neomatrix369/dl4j-nlp-cuda)
Expand All @@ -13,6 +13,7 @@ NLP using DL4J (cuda): [![NLP using DL4J (cuda)](https://img.shields.io/docker/p
- [Library, Framework, Models, Tools, Services](#library-framework-models-tools-services)
- [Metaphor detection](#metaphor-detection)
- [Sentiment analysis](#sentiment-analysis)
- [Topic modelling](#topic-modelling)
- [Presentations](#presentations)
- [Notebooks](#notebooks)
- [Unstructured to structured data](#unstructured-to-structured-data)
Expand Down Expand Up @@ -60,6 +61,11 @@ See [Metaphor detection](./metaphor-detection.md)

See [Sentiment analysis](./sentiment-analysis.md)

## Topic modelling

- [Topic Modeling in Python using PyCaret ☟](https://www.linkedin.com/feed/update/urn:li:activity:6768428905800982528/)
- [Topic modeling helps discover abstract topics](https://www.linkedin.com/posts/srivatsan-srinivasan-b8131b_machinelearning-datascience-ml-activity-6744246884703059968-DyNX)

## Presentations

- [Natural Language Processing presentation by Ovidiu S.](../presentations/nlp/)
Expand Down Expand Up @@ -92,6 +98,7 @@ See [Sentiment analysis](./sentiment-analysis.md)
## Text data Augmentation

- Easy Data Augmentation for Text Classification: [Video](https://www.youtube.com/watch?v=3w92peJtYNQ) | [Kernel](https://www.kaggle.com/init927/nlp-data-augmentation)
- [SentAugment is a data augmentation technique for semi-supervised learning in NLP](https://www.linkedin.com/posts/philipvollet_datascience-machinelearning-pytorch-activity-6727834166941118464-bVIR)

## Summarise text

Expand Down
17 changes: 16 additions & 1 deletion natural-language-processing/general.md
Original file line number Diff line number Diff line change
Expand Up @@ -63,6 +63,19 @@
- [The #NLP Model Forge: Generate Model Code On Demand #AI - check out this overview by Matthew Mayo](https://www.kdnuggets.com/2020/08/nlp-model-forge.html#.X0PCodTTDeQ.linkedin)
- [NLP as a service using Streamlit & FastAPI (Sebastián Ramírez Montaño) w/ Hugging Face transformers by Abhishek Kumar Mishra](https://www.linkedin.com/posts/madewithml_insight-made-with-ml-activity-6701484081949097984-NUsj)
- [Project Insight is designed to create NLP as a service ](https://lnkd.in/g85xFCz)
- [Language Generation with Multi-hop Reasoning on Commonsense Knowledge Graph](https://www.linkedin.com/posts/philipvollet_datascience-nlp-pytorch-activity-6734350662294917120-LSsw)
- [Best Natural Language Processing competitions on @kaggle to learn from](https://youtube.com/watch?v=-nH4OSyjwSI)
- [The biggest highlight of 𝗘𝗠𝗡𝗟𝗣 𝟮𝟬𝟮𝟬 𝗶𝘀 𝘁𝗵𝗲 "𝗛𝗶𝗴𝗵-𝗣𝗲𝗿𝗳𝗼𝗿𝗺𝗮𝗻𝗰𝗲 𝗡𝗮𝘁𝘂𝗿𝗮𝗹 𝗟𝗮𝗻𝗴𝘂𝗮𝗴𝗲 𝗣𝗿𝗼𝗰𝗲𝘀𝘀𝗶𝗻𝗴" tutorial by Google Research](https://www.linkedin.com/posts/ivan-bilan_nlp-machinelearning-deeplearning-activity-6736873867190513664-rsqz)
- [Bort is an optimal subset of architectural parameters for the BERT architecture](https://www.linkedin.com/posts/philipvollet_nlp-machinelearning-datascience-activity-6727329794150813696-SFqV)
- [sparknlp_display visualizations that power the 80+ #SparkNLP Streamlit demos](https://www.linkedin.com/posts/philipvollet_openpensource-sparknlp-nlp-activity-6734909712002904064-B_Ig
)
- [Deep learning pipeline for Natural Language Processing (NLP) by Bauyrjan Jyenis](https://buff.ly/32D7j82)
- [Review of the Book “Natural Language Processing For Hackers”](https://tomassetti.me/review-of-the-book-natural-language-processing-for-hackers/)
- [awesome-neural-adaptation-in-NLP](https://www.linkedin.com/posts/philipvollet_nlp-datascience-machinelearning-activity-6729376332976922624-si9O)
- [Twitter Sentiment Analysis - Classical Approach vs Deep Learning as beginner friendly notebook](https://www.linkedin.com/posts/philipvollet_datascience-deeplearning-machinelearning-activity-6738353924371283968-59XV)
- [A compilation of five excellent resources that could prove to be highly beneficial for people starting out in #NLP](https://www.linkedin.com/posts/parulpandeyindia_free-hands-on-tutorials-to-get-started-in-activity-6734443852297445376-lHby)
- [An amazing article on "Cluster Documents Using Word2Vec"](https://lnkd.in/dEUUFnJ)
- [Swiss NLP activities group](https://swissnlp.org/activities/)

### Transformers

Expand All @@ -84,7 +97,9 @@
- [The broad potential of GPT-3 is not only related to pure language! It can program, design and maybe it will finally replace lawyers and makes the world a better place](https://www.linkedin.com/posts/philipvollet_nlp-gpt3-machinelearning-activity-6691640022606729216-Bsiv)
- [The pain ends: English to Regex • Never search for regular expressions on StackOverflow again Powered by GPT-3](https://www.linkedin.com/posts/philipvollet_nlp-machinelearning-deeplearning-activity-6693043670670831616-tUhF)
- [GPT-3 implementation of Q&A: chatbot conversations (Transformer implementation)](https://colab.research.google.com/drive/1wf6f96tDCWmo7lMEf-6PQxFk8yksKUkG?usp=sharing)

- [How to use GPT-J, the open-source alternative to GPT-3 GPT-J demo](https://6b.eleuther.ai/)
- [Builder a faster Search engine with Transformers and Haystack](https://datamuni.com/@shivanandroy/Building-a-faster-accurate-search-engine-with-transformers)
- [Online tutorial on building production monitoring architectures for machine learning at scale](https://towardsdatascience.com/production-machine-learning-monitoring-outliers-drift-explainers-statistical-performance-d9b1d02ac158?gi=3f9f06e3bda1)

## Text generation

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -68,6 +68,25 @@
- [HMNI • Fuzzy Name Matching with Machine Learning. Perform common fuzzy name matching tasks including similarity scoring, record linkage, deduplication and normalization](https://www.linkedin.com/posts/philipvollet_nlp-machinelearning-datascience-activity-6694666551989297152-EGtw)
- [Jina is an AI-powered search framework, empowering developers to create cross-/multi-modal search systems (e.g. text, images, video, audio) on the cloud](https://github.com/jina-ai/jina)
- [Twint is an advanced Twitter scraping tool written in Python that allows for scraping Tweets from Twitter profiles without using Twitter's API](https://www.linkedin.com/posts/philipvollet_python-data-twitter-activity-6713352923373551616-GNlu)
- [ProphetNet: MS's transformer variant](https://github.com/microsoft/ProphetNet)
- [Rouge](https://pypi.org/project/rouge/)
- [Pointer Generator](https://github.com/AIKevin/Pointer_Generator_Summarizer)
- [Textract](https://textract.readthedocs.io/en/stable/python_package.html)
- [Text Rank](https://www.analyticsvidhya.com/blog/2018/11/introduction-text-summarization-textrank-python/)
- [TextHero](https://texthero.org/)
- [Facebook Research • TaBERT a pre-trained language model for learning joint representations of natural language utterances and structured tables for semantic parsing](https://www.linkedin.com/posts/philipvollet_nlp-machinelearning-technology-activity-66861)
- [SpikeX - SpaCy Pipes for Knowledge Extraction](https://www.linkedin.com/posts/philipvollet_nlp-machinelearning-datascience-activity-6790492432502026240-wVxj)
- [Obsei: Observe SEgment and Inform - A workflow automation tool for text segmentation](https://www.linkedin.com/posts/philipvollet_datascience-nlp-machinelearning-activity-6748875008870875136-hQoh)
- (X) Cross-Lingual Transfer Evaluation of Multilingual Encoders:
[site](https://sites.research.google/xtreme) | [github](https://github.com/google-research/xtreme)
- [VecMap (cross-lingual word embedding mappings)](https://github.com/artetxem/vecmap)
- [PyCaret: Natural Language Processing Module](https://pycaret.org/nlp/)
- [NLPretext - a python with all the text preprocessing functions you need to ease your NLP project](https://www.linkedin.com/posts/kalyankatikapallisubramanyam_nlproc-nlp-machinelearning-activity-6821345994182070272-2La4)
- [New release: Gramformer a framework for detecting, highlighting and correcting grammatical errors on natural language text](https://www.linkedin.com/posts/philipvollet_datascience-machinelearning-nlp-activity-6819547377955930112-mTye)
- [Machine Learning and Deep Learning: EN-JP Lexicon](https://github.com/Machine-Learning-Tokyo/EN-JP-ML-Lexicon)
- [MALLET is a Java-based package for statistical natural language processing, d](https://github.com/mimno/Mallet)
- [Crowlingo Multilingual NLP](https://www.dataiku.com/product/plugins/crowlingo-nlp/)
- [An adaptable platform for text analytics and discovery](http://www.rosette.com/)

# Contributing

Expand Down
Loading

0 comments on commit 7b764b7

Please sign in to comment.