-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathpost_processing.py
114 lines (84 loc) · 4.38 KB
/
post_processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import cv2
import numpy as np
import torch
from pytorch_lightning import seed_everything
from cldm.model import load_state_dict
from PIL import Image
import os
from train_post_process_predictor import PostProcess
from tqdm import tqdm
import argparse
@torch.no_grad()
def restore_img(comp_img):
comp_img = comp_img * 255
return comp_img
def get_args_parser():
parser = argparse.ArgumentParser('Post-processing', add_help=False)
parser.add_argument('--batch_size', default=1, type=int)
parser.add_argument('--checkpoint_path', default='data/ckpt/ppp_256.ckpt', type=str)
parser.add_argument('--gpu_id', default=2, type=int)
parser.add_argument('--result_dir', default='result', type=str)
return parser
if __name__ == '__main__':
parser = get_args_parser()
args = parser.parse_args()
torch.cuda.set_device(args.gpu_id)
model = PostProcess(infe_steps=50).cpu()
model.load_state_dict(load_state_dict(args.checkpoint_path, location='cuda'), strict=False)
model = model.cuda()
seed = 723
ddim_steps = 50
fg_instance_path = os.path.join(args.result_dir, "gt_object_mask")
shadowfree_path = os.path.join(args.result_dir, "gt_shadowfree_img")
generated_img_root = os.path.join(args.result_dir, "gen_result")
save_root = os.path.join(args.result_dir, "pp_result")
save_mask_root = os.path.join(args.result_dir, "pp_mask")
imname_total= os.listdir(generated_img_root)
seed_everything(seed)
for img_name in tqdm(imname_total):
shadowfree_img_path = os.path.join(shadowfree_path, img_name)
object_mask_path = os.path.join(fg_instance_path, img_name)
width, height = 256, 256
shadowfree_img = cv2.imread(shadowfree_img_path)
shadowfree_img = cv2.resize(shadowfree_img, (width, height))
object_mask = cv2.imread(object_mask_path, cv2.IMREAD_GRAYSCALE)
object_mask = cv2.resize(object_mask, (width, height))
shadowfree_img = cv2.cvtColor(shadowfree_img, cv2.COLOR_BGR2RGB)
source = np.concatenate((shadowfree_img, object_mask[:, :, np.newaxis]), axis=-1)
source = source.astype(np.float32) / 255.0
shadowfree_img_ = (shadowfree_img.astype(np.float32) / 127.5) - 1.0
device = torch.device("cuda:"+str(args.gpu_id))
shadowfree_img_ = torch.from_numpy(shadowfree_img_.copy()).float().unsqueeze(0).to(device)
source_ = torch.from_numpy(source.copy()).float().unsqueeze(0).to(device)
prompt = ''
batch = dict(txt=[prompt], hint=source_, mask=None, name=img_name)
comp_img_scaled = batch['hint'][:, :, :, :3]
obj_mask = batch['hint'][:, :, :, 3:]
comp_img= restore_img(comp_img_scaled)
with torch.no_grad():
model.eval()
image_scaled = np.array(Image.open(os.path.join(generated_img_root,img_name)).convert('RGB').resize((width, height),Image.NEAREST))
image_scaled = torch.from_numpy(image_scaled.copy()).float().unsqueeze(0).to(device)
image_scaled = image_scaled/127.5 - 1
image = torch.clamp(image_scaled, -1., 1.)
image = (image + 1.0) / 2.0
image_256 = (image * 255).int()
input = torch.concat([image_scaled, comp_img_scaled * 2 - 1, obj_mask], dim=-1)
null_timeteps = torch.zeros(1, device=input.device)
output = model.post_process_net(input.permute(0,3,1,2), timesteps=null_timeteps)
output = output.permute(0,2,3,1)
pred_mask = torch.greater_equal(output[:, :, :, 3], 0).int()
adjusted_img = output[:, :, :, :3]
adjusted_img = torch.clamp(adjusted_img, -1., 1.)
adjusted_img = (adjusted_img + 1.0) / 2.0
adjusted_img = (adjusted_img * 255).int()
new_composite_img = adjusted_img * pred_mask.unsqueeze(3) + (1-pred_mask.unsqueeze(3)) * comp_img
filename = img_name
os.makedirs(save_root, exist_ok=True)
os.makedirs(save_mask_root, exist_ok=True)
save_path = os.path.join(save_root, filename)
save_mask = Image.fromarray(np.array((pred_mask*255).squeeze(0).detach().cpu(), dtype=np.uint8))
save_tuned = Image.fromarray(np.array(adjusted_img.squeeze(0).detach().cpu(), dtype=np.uint8))\
img_name_1, extension = os.path.splitext(img_name)
save_mask.save(os.path.join(save_mask_root, img_name))
save_tuned.save(os.path.join(save_root, img_name))