-
Notifications
You must be signed in to change notification settings - Fork 98
/
Copy pathtest.py
62 lines (57 loc) · 2.88 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
from datetime import datetime
import time
import os
from options.test_options import TestOptions
from data import create_dataset
from models import create_model
from util.visualizer import save_images
from util import html,util
from skimage import data, img_as_float
from skimage.measure import compare_mse as mse
from skimage.measure import compare_psnr as psnr
if __name__ == '__main__':
opt = TestOptions().parse() # get test options
# hard-code some parameters for test
opt.num_threads = 0 # test code only supports num_threads = 1
opt.batch_size = 1 # test code only supports batch_size = 1
opt.serial_batches = True # disable data shuffling; comment this line if results on randomly chosen images are needed.
opt.no_flip = True # no flip; comment this line if results on flipped images are needed.
opt.display_id = -1 # no visdom display; the test code saves the results to a HTML file.
dataset = create_dataset(opt) # create a dataset given opt.dataset_mode and other options
model = create_model(opt) # create a model given opt.model and other options
model.setup(opt) # regular setup: load and print networks; create schedulers
# create a website
web_dir = os.path.join(opt.results_dir, opt.name, '%s_%s' % (opt.phase, opt.epoch)) # define the website directory
webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.epoch))
if opt.eval:
model.eval()
for i, data in enumerate(dataset):
if i >= opt.num_test: # only apply our model to opt.num_test images.
break
model.set_input(data) # unpack data from data loader
model.test() # run inference
visuals = model.get_current_visuals() # get image results
img_path = str(data['img_path'])
raw_name = img_path.replace(('[\''),'')
raw_name = raw_name.replace(('.jpg\']'),'.jpg')
raw_name = raw_name.split('/')[-1]
image_name = '%s' % raw_name
save_path = os.path.join(web_dir,'images/',image_name)
for label, im_data in visuals.items():
if label=='output':
output = util.tensor2im(im_data)
util.save_image(output, save_path, aspect_ratio=opt.aspect_ratio)
output =np.array(output, dtype=np.float32)
if label=='real':
real=util.tensor2im(im_data)
real=np.array(real, dtype=np.float32)
if label=='comp':
comp=util.tensor2im(im_data)
comp=np.array(comp, dtype=np.float32)
mse_score_op = mse(output,real)
psnr_score_op = psnr(real,output,data_range=output.max() - output.min())
print('%s | mse %0.2f | psnr %0.2f' % (image_name,mse_score_op,psnr_score_op))
webpage.save() # save the HTML