Skip to content

bc-li/paper-reading

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

59 Commits
 
 
 
 

Repository files navigation

Paper Reading

This repo contains my paper reading notes on deep learning. Check the notes at https://bc-li.github.io/paperreading.

Paper reading notes

PHASE #1

Title Field Time Report link Time I started Status
[ICCV 2015] Learning Deconvolution Network for Semantic Segmentation VISION 2015 https://bc-li.github.io/paper/deconvnet 2021/5/17 Done
[NeurIPS 2017] Attention Is All You Need NLP 2017 https://bc-li.github.io/paper/transformer 2021/12/11 Done
[NAACL 2019] BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding NLP 2018 https://bc-li.github.io/paper/bert 2021/12/15 Done
[NeurIPS 2014] Sequence to Sequence Learning with Neural Networks NLP 2014 https://bc-li.github.io/paper/seq2seq 2022/1/21 Done
[ICLR 2018] Non-Autoregressive Neural Machine Translation NLP 2018 https://bc-li.github.io/paper/nonauto 2022/1/24 Done
[ICLR 2019] Parameter-Efficient Transfer Learning for NLP NLP 2019 https://bc-li.github.io/paper/petl 2022/2/2 Done
[ICLR 2018] Unsupervised Neural Machine Translation NLP 2018 https://bc-li.github.io/paper/unsupervised-NMT 2022/2/4 Done

PHASE #1.5

Title Field Time Report link Time I started Status
Classic CNN structures (LeNet to DenseNet) VISION 1998-2017 https://bc-li.github.io/paper/cnn 2022/2/25 Done
MobileNets series [V1 to V3] VISION 2017 https://bc-li.github.io/paper/mobilenets 2022/3/10 Done
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size VISION 2016 https://bc-li.github.io/paper/SqueezeNet 2022/3/10 Dropped

Classic CNN structures: 对近年来比较经典的 CNN 架构类型做了小结,并基于 d2l.ai 提供代码在 FASHION 数据集上进行训练,做了简单尝试。

PHASE #2

Title Field Time Report link Time I started Status
[NeurIPS 2019] Levenshtein Transformer NLP 2019 https://bc-li.github.io/paper/lt 2022/2/15 70%
[NeurIPS 2021] Multimodal Few-Shot Learning with Frozen Language Models MultiModal 2021 https://bc-li.github.io/paper/frozenmodel 2022/4/6 50%
[ICCV 2021] Pano-AVQA: Grounded Audio-Visual Question Answering on 360◦ Videos MultiModal 2021 https://bc-li.github.io/paper/pano-avqa 2022/4/15 Pending
[CVPR 2022] Learning to Answer Questions in Dynamic Audio-Visual Scenarios MultiModal 2022 https://bc-li.github.io/paper/music-avqa 2022/4/15 80%

Stack

Title Field Time Report link Time I started Status
[SCTS 2020] Pre-trained Models for Natural Language Processing: A Survey NLP 2020 N/A N/A N/A

写 blog 的时候如未特殊说明则为从约为零基础开始。在 blog post 中我会把我为了理解文中一些比较 specific 的概念找到的相对容易理解的原出处贴到文中,方便查阅,且不再重复阐述。

Acknowledgements

https://github.com/mli/paper-reading

https://www.deeplearningbook.org/