-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
124 lines (104 loc) · 5.06 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
"""
MIT License
Copyright (c) 2020 Bachtiar Herdianto
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
import random
import numpy as np
import matplotlib.pyplot as plt
def Rastrigin (x): # Rastrigin function
total = 10*len(x)
for i in range(len(x)):
total += x[i]**2 - (10*np.cos(2*np.pi*x[i]))
return total
def grad_Rastrigin (x): # Derivative of Rastrigin function
gradient_coordinate = []
for i in range(len(x)):
total = 2*x[i] + 10*2*np.pi*x[i]*np.sin(2*np.pi*x[i])
gradient_coordinate.append(total)
return np.array(gradient_coordinate)
class Particle:
def __init__(self, dim, minx, maxx, error):
self.position = np.random.uniform(low=minx, high=maxx, size=dim)
self.velocity = np.random.uniform(low=minx, high=maxx, size=dim)
self.best_part_pos = self.position.copy()
self.error = error(self.position)
self.best_part_err = self.error.copy()
def setPos(self, pos, error):
self.position = pos
self.error = error(pos)
if self.error < self.best_part_err:
self.best_part_err = self.error
self.best_part_pos = pos
def controlPos(self, bounds):
for i in range(len(bounds)):
if self.position[i] < bounds[i][0]:
self.position[i] = bounds[i][0]
if self.position[i] > bounds[i][1]:
self.position[i] = bounds[i][1]
class PSO:
def __init__(self, dims, numOfIndiv, numOfEpochs, lower, upper, funct, grad):
self.swarm_list = [Particle(dims, lower, upper, funct) for i in range(numOfIndiv)]
self.numOfEpochs = numOfEpochs
self.best_swarm_position = np.random.uniform(low=lower, high=upper, size=dims)
self.dimension = dims
self.upper = upper
self.lower = lower
self.best_swarm_error = -1
self.function = funct
self.gradien = grad
self.boundaries = []
for i in range(dims):
self.boundaries.append((lower, upper))
def optimize_orlanj(self, weight, max, min, c1, c2, lr):
r1 = random.random()
r2 = random.random()
funct = self.function
grad_funct = self.gradien
boundaries = self.boundaries
X_epoch = []
Y_error = []
for i in range(self.numOfEpochs):
for j in range(len(self.swarm_list)):
current_particle = self.swarm_list[j]
Vcurr = grad_funct(current_particle.position)
Vcog = r1 * c1 * (current_particle.best_part_pos - current_particle.position)
Vsos = r2 * c2 * (self.best_swarm_position - current_particle.position)
Vnew = weight(max, min, i, self.numOfEpochs)*Vcurr + Vcog + Vsos
new_position = current_particle.position - lr * Vnew
self.swarm_list[j].setPos(new_position, funct)
self.swarm_list[j].velocity = Vnew
self.swarm_list[j].controlPos(boundaries)
# check the position if it is best for swarm
if funct(new_position) < self.best_swarm_error or self.best_swarm_error == -1:
self.best_swarm_position = new_position
self.best_swarm_error = funct(new_position)
X_epoch.append(i)
Y_error.append(self.best_swarm_error)
if i % 29 == 0:
print('\nIterasi: {0} \nx1: {1}\nx2: {2}\ny: {3}'.format(i + 1, self.best_swarm_position[0], self.best_swarm_position[1], self.best_swarm_error))
a, b = np.array(X_epoch), np.array(Y_error)
plt.plot(a, b)
plt.xlabel('Iterations')
plt.ylabel('Objective value (minimization)')
plt.title('Optimization Graph')
plt.show()
def Weight(Wmax, Wmin, iteration, maxiter):
return Wmax - ((Wmax - Wmin)*((1 + iteration)/maxiter))
print('Modified Swarm Intelligent Optimization\nTo optimize Rastrigin function\n')
settingOrlanj = PSO(dims=2, numOfIndiv=20, numOfEpochs=100, lower=-500, upper=500, funct=Rastrigin, grad=grad_Rastrigin)
optimize_orlanj(settingOrlanj, weight=Weight, max=0.8, min=0.6, c1=1.49445, c2=1.49445, lr=0.035)