Skip to content

Commit

Permalink
subgraph style (teorth#454)
Browse files Browse the repository at this point in the history
Co-authored-by: Pietro Monticone <38562595+pitmonticone@users.noreply.github.com>
  • Loading branch information
madvorak and pitmonticone authored Oct 9, 2024
1 parent d5c49c2 commit 650abd6
Showing 1 changed file with 7 additions and 9 deletions.
16 changes: 7 additions & 9 deletions equational_theories/Subgraph.lean
Original file line number Diff line number Diff line change
Expand Up @@ -104,8 +104,6 @@ theorem Equation2_implies_Equation4522 (G: Type*) [Magma G] (h: Equation2 G) : E
theorem Equation2_implies_Equation4582 (G: Type*) [Magma G] (h: Equation2 G) : Equation4582 G :=
fun _ _ _ _ _ _ ↦ h _ _



@[equational_result]
theorem Equation3_implies_Equation8 (G: Type*) [Magma G] (h: Equation3 G) : Equation8 G :=
fun x ↦ by repeat rw [← h]
Expand Down Expand Up @@ -285,16 +283,16 @@ theorem Lemma_eq1689_implies_h8 (G: Type*) [Magma G] (h: Equation1689 G) : ∀ a
/-- The below results for Equation1571 are out of order because early ones are lemmas for later ones -/
@[equational_result]
theorem Equation1571_implies_Equation2662 (G: Type _) [Magma G] (h: Equation1571 G) : Equation2662 G :=
fun x y ↦ Eq.trans (h x (x ◇ y) (x ◇ y)) (congrArg (fun z ↦ ((x ◇ y) ◇ (x ◇ y)) ◇ z)
(Eq.symm $ h x x y))
fun x y ↦ (h x (x ◇ y) (x ◇ y)).trans (congrArg (((x ◇ y) ◇ (x ◇ y)) ◇ ·) (h x x y).symm)

@[equational_result]
theorem Equation1571_implies_Equation40 (G: Type _) [Magma G] (h: Equation1571 G) : Equation40 G := by
have sqRotate : ∀ x y z : G, (x ◇ y) ◇ (x ◇ y) = (y ◇ z) ◇ (y ◇ z) :=
fun x y z ↦ Eq.trans (congrArg (fun w ↦ (x ◇ y) ◇ (x ◇ w))
(Equation1571_implies_Equation2662 G h y z)) (Eq.symm $ h ((y ◇ z) ◇ (y ◇ z)) x y)
fun x y z ↦
(congrArg (fun w ↦ (x ◇ y) ◇ (x ◇ w)) (Equation1571_implies_Equation2662 G h y z)).trans
(h ((y ◇ z) ◇ (y ◇ z)) x y).symm
have sqConstInImage : ∀ x y z w : G, (x ◇ y) ◇ (x ◇ y) = (z ◇ w) ◇ (z ◇ w) :=
fun x y z w ↦ Eq.trans (sqRotate x y z) (sqRotate y z w)
fun x y z w ↦ (sqRotate x y z).trans (sqRotate y z w)
exact fun x y ↦ h x x x ▸ h y y y ▸ sqConstInImage (x ◇ x) (x ◇ (x ◇ x)) (y ◇ y) (y ◇ (y ◇ y))

@[equational_result]
Expand All @@ -304,14 +302,14 @@ theorem Equation1571_implies_Equation23 (G: Type _) [Magma G] (h: Equation1571 G

@[equational_result]
theorem Equation1571_implies_Equation8 (G: Type _) [Magma G] (h: Equation1571 G) : Equation8 G :=
fun x ↦ Eq.trans (h x x x) (((congrArg (fun a ↦ a ◇ (x ◇ (x ◇ x))))
fun x ↦ (h x x x).trans (((congrArg (· ◇ (x ◇ (x ◇ x))))
(Equation1571_implies_Equation40 G h x (x ◇ (x ◇ x)))).trans
(((Equation1571_implies_Equation23 G h (x ◇ (x ◇ x))).symm).trans rfl))

@[equational_result]
theorem Equation1571_implies_Equation16 (G: Type _) [Magma G] (h: Equation1571 G) : Equation16 G :=
fun x y ↦ ((congrArg (fun w ↦ y ◇ (y ◇ w)) (Equation1571_implies_Equation8 G h x)).trans
((Equation1571_implies_Equation40 G h x y ▸ ((congrArg (fun w ↦ w ◇ (y ◇ (x ◇ (y ◇ y)))))
((Equation1571_implies_Equation40 G h x y ▸ ((congrArg (· ◇ (y ◇ (x ◇ (y ◇ y)))))
(Equation1571_implies_Equation8 G h y)).trans (h x y (y ◇ y)).symm))).symm

@[equational_result]
Expand Down

0 comments on commit 650abd6

Please sign in to comment.