forked from mattloper/chumpy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreordering.py
445 lines (360 loc) · 13.3 KB
/
reordering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
"""
Author(s): Matthew Loper
See LICENCE.txt for licensing and contact information.
"""
import ch
import numpy as np
from utils import row, col
import scipy.sparse as sp
import weakref
__all__ = ['sort', 'tile', 'repeat', 'transpose', 'rollaxis', 'swapaxes', 'reshape', 'Select',
'atleast_1d', 'atleast_2d', 'atleast_3d', 'squeeze', 'expand_dims', 'fliplr', 'flipud',
'concatenate', 'vstack', 'hstack', 'dstack', 'ravel', 'diag', 'diagflat', 'roll', 'rot90']
# Classes deriving from "Permute" promise to only reorder/reshape
class Permute(ch.Ch):
pass
def ravel(a, order='C'):
assert(order=='C')
if isinstance (a, np.ndarray):
self = ch.Ch(a)
return reshape(a=a, newshape=(-1,))
class Reorder(Permute):
dterms = 'a',
def on_changed(self, which):
if not hasattr(self, 'dr_lookup'):
self.dr_lookup = {}
def compute_r(self):
return self.reorder(self.a.r)
def compute_dr_wrt(self, wrt):
if wrt is self.a:
if False:
from scipy.sparse.linalg.interface import LinearOperator
return LinearOperator((self.size, wrt.size), lambda x : self.reorder(x.reshape(self.a.shape)).ravel())
else:
a = self.a
asz = a.size
ashape = a.shape
key = self.unique_reorder_id()
if key not in self.dr_lookup or key is None:
JS = self.reorder(np.arange(asz).reshape(ashape))
IS = np.arange(JS.size)
data = np.ones_like(IS)
shape = JS.shape
self.dr_lookup[key] = sp.csc_matrix((data, (IS, JS.ravel())), shape=(self.r.size, wrt.r.size))
return self.dr_lookup[key]
class Sort(Reorder):
dterms = 'a'
terms = 'axis', 'kind', 'order'
def reorder(self, a): return np.sort(a, self.axis, self.kind, self.order)
def unique_reorder_id(self): return None
def sort(a, axis=-1, kind='quicksort', order=None):
return Sort(a=a, axis=axis, kind=kind, order=order)
class Tile(Reorder):
dterms = 'a',
terms = 'reps',
term_order = 'a', 'reps'
def reorder(self, a): return np.tile(a, self.reps)
def unique_reorder_id(self): return (self.a.shape, tuple(self.reps))
def tile(A, reps):
return Tile(a=A, reps=reps)
class Diag(Reorder):
dterms = 'a',
terms = 'k',
def reorder(self, a): return np.diag(a, self.k)
def unique_reorder_id(self): return (self.a.shape, self.k)
def diag(v, k=0):
return Diag(a=v, k=k)
class DiagFlat(Reorder):
dterms = 'a',
terms = 'k',
def reorder(self, a): return np.diagflat(a, self.k)
def unique_reorder_id(self): return (self.a.shape, self.k)
def diagflat(v, k=0):
return DiagFlat(a=v, k=k)
class Repeat(Reorder):
dterms = 'a',
terms = 'repeats', 'axis'
def reorder(self, a): return np.repeat(a, self.repeats, self.axis)
def unique_reorder_id(self): return (self.repeats, self.axis)
def repeat(a, repeats, axis=None):
return Repeat(a=a, repeats=repeats, axis=axis)
class transpose(Reorder):
dterms = 'a'
terms = 'axes'
term_order = 'a', 'axes'
def reorder(self, a): return np.require(np.transpose(a, axes=self.axes), requirements='C')
def unique_reorder_id(self): return (self.a.shape, None if self.axes is None else tuple(self.axes))
def on_changed(self, which):
if not hasattr(self, 'axes'):
self.axes = None
super(self.__class__, self).on_changed(which)
class rollaxis(Reorder):
dterms = 'a'
terms = 'axis', 'start'
term_order = 'a', 'axis', 'start'
def reorder(self, a): return np.rollaxis(a, axis=self.axis, start=self.start)
def unique_reorder_id(self): return (self.a.shape, self.axis, self.start)
def on_changed(self, which):
if not hasattr(self, 'start'):
self.start = 0
super(self.__class__, self).on_changed(which)
class swapaxes(Reorder):
dterms = 'a'
terms = 'axis1', 'axis2'
term_order = 'a', 'axis1', 'axis2'
def reorder(self, a): return np.swapaxes(a, axis1=self.axis1, axis2=self.axis2)
def unique_reorder_id(self): return (self.a.shape, self.axis1, self.axis2)
class Roll(Reorder):
dterms = 'a',
terms = 'shift', 'axis'
term_order = 'a', 'shift', 'axis'
def reorder(self, a): return np.roll(a, self.shift, self.axis)
def unique_reorder_id(self): return (self.shift, self.axis)
def roll(a, shift, axis=None):
return Roll(a, shift, axis)
class Rot90(Reorder):
dterms = 'a',
terms = 'k',
def reorder(self, a): return np.rot90(a, self.k)
def unique_reorder_id(self): return (self.a.shape, self.k)
def rot90(m, k=1):
return Rot90(a=m, k=k)
class Reshape(Permute):
dterms = 'a',
terms = 'newshape',
term_order= 'a', 'newshape'
def compute_r(self):
return self.a.r.reshape(self.newshape)
def compute_dr_wrt(self, wrt):
if wrt is self.a:
return sp.eye(self.a.size, self.a.size)
#return self.a.dr_wrt(wrt)
# def reshape(a, newshape):
# if isinstance(a, Reshape) and a.newshape == newshape:
# return a
# return Reshape(a=a, newshape=newshape)
def reshape(a, newshape):
while isinstance(a, Reshape):
a = a.a
return Reshape(a=a, newshape=newshape)
# class And(ch.Ch):
# dterms = 'x1', 'x2'
#
# def compute_r(self):
# if True:
# needs_work = [self.x1, self.x2]
# done = []
# while len(needs_work) > 0:
# todo = needs_work.pop()
# if isinstance(todo, And):
# needs_work += [todo.x1, todo.x2]
# else:
# done = [todo] + done
# return np.concatenate([d.r.ravel() for d in done])
# else:
# return np.concatenate((self.x1.r.ravel(), self.x2.r.ravel()))
#
# # This is only here for reverse mode to work.
# # Most of the time, the overridden dr_wrt is callpath gets used.
# def compute_dr_wrt(self, wrt):
#
# if wrt is not self.x1 and wrt is not self.x2:
# return
#
# input_len = wrt.r.size
# x1_len = self.x1.r.size
# x2_len = self.x2.r.size
#
# mtxs = []
# if wrt is self.x1:
# mtxs.append(sp.spdiags(np.ones(x1_len), 0, x1_len, x1_len))
# else:
# mtxs.append(sp.csc_matrix((x1_len, input_len)))
#
# if wrt is self.x2:
# mtxs.append(sp.spdiags(np.ones(x2_len), 0, x2_len, x2_len))
# else:
# mtxs.append(sp.csc_matrix((x2_len, input_len)))
#
#
# if any([sp.issparse(mtx) for mtx in mtxs]):
# result = sp.vstack(mtxs, format='csc')
# else:
# result = np.vstack(mtxs)
#
# return result
#
# def dr_wrt(self, wrt, want_stacks=False, reverse_mode=False):
# self._call_on_changed()
#
# input_len = wrt.r.size
# x1_len = self.x1.r.size
# x2_len = self.x2.r.size
#
# mtxs = []
# if wrt is self.x1:
# mtxs.append(sp.spdiags(np.ones(x1_len), 0, x1_len, x1_len))
# else:
# if isinstance(self.x1, And):
# tmp_mtxs = self.x1.dr_wrt(wrt, want_stacks=True, reverse_mode=reverse_mode)
# for mtx in tmp_mtxs:
# mtxs.append(mtx)
# else:
# mtxs.append(self.x1.dr_wrt(wrt, reverse_mode=reverse_mode))
# if mtxs[-1] is None:
# mtxs[-1] = sp.csc_matrix((x1_len, input_len))
#
# if wrt is self.x2:
# mtxs.append(sp.spdiags(np.ones(x2_len), 0, x2_len, x2_len))
# else:
# if isinstance(self.x2, And):
# tmp_mtxs = self.x2.dr_wrt(wrt, want_stacks=True, reverse_mode=reverse_mode)
# for mtx in tmp_mtxs:
# mtxs.append(mtx)
# else:
# mtxs.append(self.x2.dr_wrt(wrt, reverse_mode=reverse_mode))
# if mtxs[-1] is None:
# mtxs[-1] = sp.csc_matrix((x2_len, input_len))
#
# if want_stacks:
# return mtxs
# else:
# if any([sp.issparse(mtx) for mtx in mtxs]):
# result = sp.vstack(mtxs, format='csc')
# else:
# result = np.vstack(mtxs)
#
# return result
class Select(Permute):
terms = ['idxs', 'preferred_shape']
dterms = ['a']
term_order = 'a', 'idxs', 'preferred_shape'
def compute_r(self):
result = self.a.r.ravel()[self.idxs].copy()
if hasattr(self, 'preferred_shape'):
return result.reshape(self.preferred_shape)
else:
return result
def compute_dr_wrt(self, obj):
if obj is self.a:
if not hasattr(self, '_dr_cached'):
IS = np.arange(len(self.idxs)).flatten()
JS = self.idxs.ravel()
ij = np.vstack((row(IS), row(JS)))
data = np.ones(len(self.idxs))
self._dr_cached = sp.csc_matrix((data, ij), shape=(len(self.idxs), len(self.a.r.ravel())))
return self._dr_cached
def on_changed(self, which):
if hasattr(self, '_dr_cached'):
if 'idxs' in which or self.a.r.size != self._dr_cached.shape[1]:
del self._dr_cached
class AtleastNd(ch.Ch):
dterms = 'x'
terms = 'ndims'
def compute_r(self):
xr = self.x.r
if self.ndims == 1:
target_shape = np.atleast_1d(xr).shape
elif self.ndims == 2:
target_shape = np.atleast_2d(xr).shape
elif self.ndims == 3:
target_shape = np.atleast_3d(xr).shape
else:
raise Exception('Need ndims to be 1, 2, or 3.')
return xr.reshape(target_shape)
def compute_dr_wrt(self, wrt):
if wrt is self.x:
return 1
def atleast_nd(ndims, *arys):
arys = [AtleastNd(x=ary, ndims=ndims) for ary in arys]
return arys if len(arys) > 1 else arys[0]
def atleast_1d(*arys):
return atleast_nd(1, *arys)
def atleast_2d(*arys):
return atleast_nd(2, *arys)
def atleast_3d(*arys):
return atleast_nd(3, *arys)
def squeeze(a, axis=None):
if isinstance(a, np.ndarray):
return np.squeeze(a, axis)
shape = np.squeeze(a.r, axis).shape
return a.reshape(shape)
def expand_dims(a, axis):
if isinstance(a, np.ndarray):
return np.expand_dims(a, axis)
shape = np.expand_dims(a.r, axis).shape
return a.reshape(shape)
def fliplr(m):
return m[:,::-1]
def flipud(m):
return m[::-1,...]
class Concatenate(ch.Ch):
def on_changed(self, which):
if not hasattr(self, 'dr_cached'):
self.dr_cached = weakref.WeakKeyDictionary()
@property
def our_terms(self):
if not hasattr(self, '_our_terms'):
self._our_terms = [getattr(self, s) for s in self.dterms]
return self._our_terms
def __getstate__(self):
# Have to get rid of WeakKeyDictionaries for serialization
if hasattr(self, 'dr_cached'):
del self.dr_cached
return super(self.__class__, self).__getstate__()
def compute_r(self):
return np.concatenate([t.r for t in self.our_terms], axis=self.axis)
@property
def everything(self):
if not hasattr(self, '_everything'):
self._everything = np.arange(self.r.size).reshape(self.r.shape)
self._everything = np.rollaxis(self._everything, self.axis, 0)
return self._everything
def compute_dr_wrt(self, wrt):
if wrt in self.dr_cached:
return self.dr_cached[wrt]
if wrt not in self.our_terms:
return
_JS = np.arange(wrt.size)
_data = np.ones(wrt.size)
IS = []
JS = []
data = []
offset = 0
for term in self.our_terms:
tsz = term.shape[self.axis]
if term is wrt:
JS += [_JS]
data += [_data]
IS += [self.everything[offset:offset+tsz].ravel()]
offset += tsz
IS = np.concatenate(IS).ravel()
JS = np.concatenate(JS).ravel()
data = np.concatenate(data)
self.dr_cached[wrt] = sp.csc_matrix((data, (IS, JS)), shape=(self.r.size, wrt.size))
return self.dr_cached[wrt]
def expand_concatenates(mtxs, axis=0):
mtxs = list(mtxs)
done = []
while len(mtxs) > 0:
mtx = mtxs.pop(0)
if isinstance(mtx, Concatenate) and mtx.axis == axis:
mtxs = [getattr(mtx, s) for s in mtx.dterms] + mtxs
else:
done.append(mtx)
return done
def concatenate(mtxs, axis=0):
mtxs = expand_concatenates(mtxs, axis)
result = Concatenate()
result.dterms = []
for i, mtx in enumerate(mtxs):
result.dterms.append('m%d' % (i,))
setattr(result, result.dterms[-1], mtx)
result.axis = axis
return result
def hstack(mtxs):
return concatenate(mtxs, axis=1)
def vstack(mtxs):
return concatenate([atleast_2d(m) for m in mtxs], axis=0)
def dstack(mtxs):
return concatenate([atleast_3d(m) for m in mtxs], axis=2)