forked from mattloper/chumpy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapi_compatibility.py
534 lines (449 loc) · 19.2 KB
/
api_compatibility.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
"""
Author(s): Matthew Loper
See LICENCE.txt for licensing and contact information.
"""
import chumpy as ch
import numpy as np
from os.path import join, split
from StringIO import StringIO
import numpy
import chumpy
import cPickle as pickle
src = ''
num_passed = 0
num_not_passed = 0
which_passed = []
def r(fn_name, args_req, args_opt, nplib=numpy, chlib=chumpy):
global num_passed, num_not_passed
result = [None, None]
for lib in [nplib, chlib]:
# if fn_name is 'svd' and lib is chlib:
# import pdb; pdb.set_trace()
if lib is nplib:
fn = getattr(lib, fn_name)
else:
try:
fn = getattr(lib, fn_name)
except AttributeError:
result[0] = 'missing'
result[1] = 'missing'
num_not_passed += 1
continue
try:
if isinstance(args_req, dict):
_ = fn(**args_req)
else:
_ = fn(*args_req)
if lib is chlib:
result[0] = 'passed'
num_passed += 1
global which_passed
which_passed.append(fn_name)
if hasattr(_, 'dterms'):
try:
_.r
try:
pickle.dumps(_)
except:
result[0] += ' (but unpickleable!)'
except:
import pdb; pdb.set_trace()
result[0] += '(but cant get result!)'
except Exception as e:
if e is TypeError:
import pdb; pdb.set_trace()
if lib is nplib:
import pdb; pdb.set_trace()
else:
num_not_passed += 1
# if fn_name == 'rot90':
# import pdb; pdb.set_trace()
result[0] = e.__class__.__name__
try:
if isinstance(args_req, dict):
fn(**dict(args_req.items() + args_opt.items()))
else:
fn(*args_req, **args_opt)
if lib is chlib:
result[1] = 'passed'
except Exception as e:
if e is TypeError:
import pdb; pdb.set_trace()
result[1] = e.__class__.__name__
# print '%s: %s, %s' % (fn_name, result[0], result[1])
append(fn_name, result[0], result[1])
def make_row(a, b, c, b_color, c_color):
global src
src += '<tr><td>%s</td><td style="background-color:%s">%s</td><td style="background-color:%s">%s</td></tr>' % (a,b_color, b,c_color, c)
def append(a, b, c):
global src
b_color = 'white'
c_color = 'white'
b = b.replace('NotImplementedError', 'not yet implemented')
c = c.replace('NotImplementedError', 'not yet implemented')
b = b.replace('WontImplement', "won't implement")
c = c.replace('WontImplement', "won't implement")
lookup = {
'passed': 'lightgreen',
"won't implement": 'lightgray',
'untested': 'lightyellow',
'not yet implemented': 'pink'
}
b_color = lookup[b] if b in lookup else 'white'
c_color = lookup[c] if c in lookup else 'white'
print '%s: %s, %s' % (a,b,c)
make_row(a, b, c, b_color, c_color)
def m(s):
append(s, 'unknown', 'unknown')
global num_not_passed
num_not_passed += 1
def hd3(s):
global src
src += '<tr><td colspan=3><h3 style="margin-bottom:0;">%s</h3></td></tr>' % (s,)
def hd2(s):
global src
src += '</table><br/><br/><table border=1>'
src += '<tr><td colspan=3 style="background-color:black;color:white"><h2 style="margin-bottom:0;">%s</h2></td></tr>' % (s,)
def main():
#sample_array
###############################
hd2('Array Creation Routines')
hd3('Ones and zeros')
r('empty', {'shape': (2,4,2)}, {'dtype': np.uint8, 'order': 'C'})
r('empty_like', {'prototype': np.empty((2,4,2))}, {'dtype': np.float64, 'order': 'C'})
r('eye', {'N': 10}, {'M': 5, 'k': 0, 'dtype': np.float64})
r('identity', {'n': 10}, {'dtype': np.float64})
r('ones', {'shape': (2,4,2)}, {'dtype': np.uint8, 'order': 'C'})
r('ones_like', {'a': np.empty((2,4,2))}, {'dtype': np.float64, 'order': 'C'})
r('zeros', {'shape': (2,4,2)}, {'dtype': np.uint8, 'order': 'C'})
r('zeros_like', {'a': np.empty((2,4,2))}, {'dtype': np.float64, 'order': 'C'})
hd3('From existing data')
r('array', {'object': [1,2,3]}, {'dtype': np.float64, 'order': 'C', 'subok': False, 'ndmin': 2})
r('asarray', {'a': np.array([1,2,3])}, {'dtype': np.float64, 'order': 'C'})
r('asanyarray', {'a': np.array([1,2,3])}, {'dtype': np.float64, 'order': 'C'})
r('ascontiguousarray', {'a': np.array([1,2,3])}, {'dtype': np.float64})
r('asmatrix', {'data': np.array([1,2,3])}, {'dtype': np.float64})
r('copy', (np.array([1,2,3]),), {})
r('frombuffer', {'buffer': np.array([1,2,3])}, {})
m('fromfile')
r('fromfunction', {'function': lambda i, j: i + j, 'shape': (3, 3)}, {'dtype': np.float64})
# function, shape, **kwargs
# lambda i, j: i + j, (3, 3), dtype=int
r('fromiter', {'iter': [1,2,3,4], 'dtype': np.float64}, {'count': 2})
r('fromstring', {'string': '\x01\x02', 'dtype': np.uint8}, {})
r('loadtxt', {'fname': StringIO("0 1\n2 3")}, {})
hd3('Creating record arrays (wont be implemented)')
hd3('Creating character arrays (wont be implemented)')
hd3('Numerical ranges')
r('arange', {'start': 0, 'stop': 10}, {'step': 2, 'dtype': np.float64})
r('linspace', {'start': 0, 'stop': 10}, {'num': 2, 'endpoint': 10, 'retstep': 1})
r('logspace', {'start': 0, 'stop': 10}, {'num': 2, 'endpoint': 10, 'base': 1})
r('meshgrid', ([1,2,3], [4,5,6]), {})
m('mgrid')
m('ogrid')
hd3('Building matrices')
r('diag', {'v': np.arange(9).reshape((3,3))}, {'k': 0})
r('diagflat', {'v': [[1,2], [3,4]]}, {})
r('tri', {'N': 3}, {'M': 5, 'k': 2, 'dtype': np.float64})
r('tril', {'m': [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]}, {'k': -1})
r('triu', {'m': [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]}, {'k': -1})
r('vander', {'x': np.array([1, 2, 3, 5])}, {'N': 3})
###############################
hd2('Array manipulation routines')
hd3('Basic operations')
r('copyto', {'dst': np.eye(3), 'src': np.eye(3)}, {})
hd3('Changing array shape')
r('reshape', {'a': np.eye(3), 'newshape': (9,)}, {'order' : 'C'})
r('ravel', {'a': np.eye(3)}, {'order' : 'C'})
m('flat')
m('flatten')
hd3('Transpose-like operations')
r('rollaxis', {'a': np.ones((3,4,5,6)), 'axis': 3}, {'start': 0})
r('swapaxes', {'a': np.array([[1,2,3]]), 'axis1': 0, 'axis2': 1}, {})
r('transpose', {'a': np.arange(4).reshape((2,2))}, {'axes': (1,0)})
hd3('Changing number of dimensions')
r('atleast_1d', (np.eye(3),), {})
r('atleast_2d', (np.eye(3),), {})
r('atleast_3d', (np.eye(3),), {})
m('broadcast')
m('broadcast_arrays')
r('expand_dims', (np.array([1,2]),2), {})
r('squeeze', {'a': (np.array([[[1,2,3]]]))}, {})
hd3('Changing kind of array')
r('asarray', {'a': np.array([1,2,3])}, {'dtype': np.float64, 'order': 'C'})
r('asanyarray', {'a': np.array([1,2,3])}, {'dtype': np.float64, 'order': 'C'})
r('asmatrix', {'data': np.array([1,2,3])}, {})
r('asfarray', {'a': np.array([1,2,3])}, {})
r('asfortranarray', {'a': np.array([1,2,3])}, {})
r('asscalar', {'a': np.array([24])}, {})
r('require', {'a': np.array([24])}, {})
hd3('Joining arrays')
m('column_stack')
r('concatenate', ((np.eye(3), np.eye(3)),1), {})
r('dstack', ((np.eye(3), np.eye(3)),), {})
r('hstack', ((np.eye(3), np.eye(3)),), {})
r('vstack', ((np.eye(3), np.eye(3)),), {})
hd3('Splitting arrays')
m('array_split')
m('dsplit')
m('hsplit')
m('split')
m('vsplit')
hd3('Tiling arrays')
r('tile', (np.array([0, 1, 2]),2), {})
r('repeat', (np.array([[1,2],[3,4]]), 3), {'axis': 1})
hd3('Adding and removing elements')
m('delete')
m('insert')
m('append')
m('resize')
m('trim_zeros')
m('unique')
hd3('Rearranging elements')
r('fliplr', (np.eye(3),), {})
r('flipud', (np.eye(3),), {})
r('reshape', {'a': np.eye(3), 'newshape': (9,)}, {'order' : 'C'})
r('roll', (np.arange(10), 2), {})
r('rot90', (np.arange(4).reshape((2,2)),), {})
###############################
hd2('Linear algebra (numpy.linalg)')
extra_args = {'nplib': numpy.linalg, 'chlib': ch.linalg}
hd3('Matrix and dot products')
r('dot', {'a': np.eye(3), 'b': np.eye(3)}, {})
r('dot', {'a': np.eye(3).ravel(), 'b': np.eye(3).ravel()}, {})
r('vdot', (np.eye(3).ravel(), np.eye(3).ravel()), {})
r('inner', (np.eye(3).ravel(), np.eye(3).ravel()), {})
r('outer', (np.eye(3).ravel(), np.eye(3).ravel()), {})
r('tensordot', {'a': np.eye(3), 'b': np.eye(3)}, {})
m('einsum')
r('matrix_power', {'M': np.eye(3), 'n': 2}, {}, **extra_args)
r('kron', {'a': np.eye(3), 'b': np.eye(3)}, {})
hd3('Decompositions')
r('cholesky', {'a': np.eye(3)}, {}, **extra_args)
r('qr', {'a': np.eye(3)}, {}, **extra_args)
r('svd', (np.eye(3),), {}, **extra_args)
hd3('Matrix eigenvalues')
r('eig', (np.eye(3),), {}, **extra_args)
r('eigh', (np.eye(3),), {}, **extra_args)
r('eigvals', (np.eye(3),), {}, **extra_args)
r('eigvalsh', (np.eye(3),), {}, **extra_args)
hd3('Norms and other numbers')
r('norm', (np.eye(3),), {}, **extra_args)
r('cond', (np.eye(3),), {}, **extra_args)
r('det', (np.eye(3),), {}, **extra_args)
r('slogdet', (np.eye(3),), {}, **extra_args)
r('trace', (np.eye(3),), {})
hd3('Solving equations and inverting matrices')
r('solve', (np.eye(3),np.ones(3)), {}, **extra_args)
r('tensorsolve', (np.eye(3),np.ones(3)), {}, **extra_args)
r('lstsq', (np.eye(3),np.ones(3)), {}, **extra_args)
r('inv', (np.eye(3),), {}, **extra_args)
r('pinv', (np.eye(3),), {}, **extra_args)
r('tensorinv', (np.eye(4*6).reshape((4,6,8,3)),), {'ind': 2}, **extra_args)
hd2('Mathematical functions')
hd3('Trigonometric functions')
r('sin', (np.arange(3),), {})
r('cos', (np.arange(3),), {})
r('tan', (np.arange(3),), {})
r('arcsin', (np.arange(3)/3.,), {})
r('arccos', (np.arange(3)/3.,), {})
r('arctan', (np.arange(3)/3.,), {})
r('hypot', (np.arange(3),np.arange(3)), {})
r('arctan2', (np.arange(3),np.arange(3)), {})
r('degrees', (np.arange(3),), {})
r('radians', (np.arange(3),), {})
r('unwrap', (np.arange(3),), {})
r('unwrap', (np.arange(3),), {})
r('deg2rad', (np.arange(3),), {})
r('rad2deg', (np.arange(3),), {})
hd3('Hyperbolic functions')
r('sinh', (np.arange(3),), {})
r('cosh', (np.arange(3),), {})
r('tanh', (np.arange(3),), {})
r('arcsinh', (np.arange(3)/9.,), {})
r('arccosh', (-np.arange(3)/9.,), {})
r('arctanh', (np.arange(3)/9.,), {})
hd3('Rounding')
r('around', (np.arange(3),), {})
r('round_', (np.arange(3),), {})
r('rint', (np.arange(3),), {})
r('fix', (np.arange(3),), {})
r('floor', (np.arange(3),), {})
r('ceil', (np.arange(3),), {})
r('trunc', (np.arange(3),), {})
hd3('Sums, products, differences')
r('prod', (np.arange(3),), {})
r('sum', (np.arange(3),), {})
r('nansum', (np.arange(3),), {})
r('cumprod', (np.arange(3),), {})
r('cumsum', (np.arange(3),), {})
r('diff', (np.arange(3),), {})
r('ediff1d', (np.arange(3),), {})
r('gradient', (np.arange(3),), {})
r('cross', (np.arange(3), np.arange(3)), {})
r('trapz', (np.arange(3),), {})
hd3('Exponents and logarithms')
r('exp', (np.arange(3),), {})
r('expm1', (np.arange(3),), {})
r('exp2', (np.arange(3),), {})
r('log', (np.arange(3),), {})
r('log10', (np.arange(3),), {})
r('log2', (np.arange(3),), {})
r('log1p', (np.arange(3),), {})
r('logaddexp', (np.arange(3), np.arange(3)), {})
r('logaddexp2', (np.arange(3), np.arange(3)), {})
hd3('Other special functions')
r('i0', (np.arange(3),), {})
r('sinc', (np.arange(3),), {})
hd3('Floating point routines')
r('signbit', (np.arange(3),), {})
r('copysign', (np.arange(3), np.arange(3)), {})
r('frexp', (np.arange(3),), {})
r('ldexp', (np.arange(3), np.arange(3)), {})
hd3('Arithmetic operations')
r('add', (np.arange(3), np.arange(3)), {})
r('reciprocal', (np.arange(3),), {})
r('negative', (np.arange(3),), {})
r('multiply', (np.arange(3), np.arange(3)), {})
r('divide', (np.arange(3), np.arange(3)), {})
r('power', (np.arange(3), np.arange(3)), {})
r('subtract', (np.arange(3), np.arange(3)), {})
r('true_divide', (np.arange(3), np.arange(3)), {})
r('floor_divide', (np.arange(3), np.arange(3)), {})
r('fmod', (np.arange(3), np.arange(3)), {})
r('mod', (np.arange(3), np.arange(3)), {})
r('modf', (np.arange(3),), {})
r('remainder', (np.arange(3), np.arange(3)), {})
hd3('Handling complex numbers')
m('angle')
m('real')
m('imag')
m('conj')
hd3('Miscellaneous')
r('convolve', (np.arange(3), np.arange(3)), {})
r('clip', (np.arange(3), 0, 2), {})
r('sqrt', (np.arange(3),), {})
r('square', (np.arange(3),), {})
r('absolute', (np.arange(3),), {})
r('fabs', (np.arange(3),), {})
r('sign', (np.arange(3),), {})
r('maximum', (np.arange(3), np.arange(3)), {})
r('minimum', (np.arange(3), np.arange(3)), {})
r('fmax', (np.arange(3), np.arange(3)), {})
r('fmin', (np.arange(3), np.arange(3)), {})
r('nan_to_num', (np.arange(3),), {})
r('real_if_close', (np.arange(3),), {})
r('interp', (2.5, [1,2,3], [3,2,0]), {})
extra_args = {'nplib': numpy.random, 'chlib': ch.random}
hd2('Random sampling (numpy.random)')
hd3('Simple random data')
r('rand', (3,), {}, **extra_args)
r('randn', (3,), {}, **extra_args)
r('randint', (3,), {}, **extra_args)
r('random_integers', (3,), {}, **extra_args)
r('random_sample', (3,), {}, **extra_args)
r('random', (3,), {}, **extra_args)
r('ranf', (3,), {}, **extra_args)
r('sample', (3,), {}, **extra_args)
r('choice', (np.ones(3),), {}, **extra_args)
r('bytes', (3,), {}, **extra_args)
hd3('Permutations')
r('shuffle', (np.ones(3),), {}, **extra_args)
r('permutation', (3,), {}, **extra_args)
hd3('Distributions (these all pass)')
r('beta', (.5, .5), {}, **extra_args)
r('binomial', (.5, .5), {}, **extra_args)
r('chisquare', (.5,), {}, **extra_args)
r('dirichlet', ((10, 5, 3), 20,), {}, **extra_args)
r('exponential', [], {}, **extra_args)
r('f', [1,48,1000], {}, **extra_args)
r('gamma', [.5], {}, **extra_args)
make_row('...AND 28 OTHERS...', 'passed', 'passed', 'lightgreen', 'lightgreen')
hd3('Random generator')
r('seed', [], {}, **extra_args)
r('get_state', [], {}, **extra_args)
r('set_state', [np.random.get_state()], {}, **extra_args)
####################################
hd2('Statistics')
hd3('Order statistics')
r('amin', (np.eye(3),),{})
r('amax', (np.eye(3),),{})
r('nanmin', (np.eye(3),),{})
r('nanmax', (np.eye(3),),{})
r('ptp', (np.eye(3),),{})
r('percentile', (np.eye(3),50),{})
hd3('Averages and variance')
r('median', (np.eye(3),),{})
r('average', (np.eye(3),),{})
r('mean', (np.eye(3),),{})
r('std', (np.eye(3),),{})
r('var', (np.eye(3),),{})
r('nanmean', (np.eye(3),),{})
r('nanstd', (np.eye(3),),{})
r('nanvar', (np.eye(3),),{})
hd3('Correlating')
r('corrcoef', (np.eye(3),),{})
r('correlate', ([1, 2, 3], [0, 1, 0.5]),{})
r('cov', (np.eye(3),),{})
hd3('Histograms')
r('histogram', (np.eye(3),),{})
r('histogram2d', (np.eye(3).ravel(),np.eye(3).ravel()),{})
r('histogramdd', (np.eye(3).ravel(),),{})
r('bincount', (np.asarray(np.eye(3).ravel(), np.uint32),),{})
r('digitize', (np.array([0.2, 6.4, 3.0, 1.6]), np.array([0.0, 1.0, 2.5, 4.0, 10.0])),{})
####################################
hd2('Sorting, searching, and counting')
hd3('Sorting')
r('sort', (np.array([1,3,1,2.]),), {})
m('lexsort')
m('argsort')
m('msort')
m('sort_complex')
m('partition')
m('argpartition')
# sort(a[, axis, kind, order]) Return a sorted copy of an array.
# lexsort(keys[, axis]) Perform an indirect sort using a sequence of keys.
# argsort(a[, axis, kind, order]) Returns the indices that would sort an array.
# ndarray.sort([axis, kind, order]) Sort an array, in-place.
# msort(a) Return a copy of an array sorted along the first axis.
# sort_complex(a) Sort a complex array using the real part first, then the imaginary part.
# partition(a, kth[, axis, kind, order]) Return a partitioned copy of an array.
# argpartition(a, kth[, axis, kind, order]) Perform an indirect partition along the given axis using the algorithm specified by the kind keyword.
a5 = np.arange(5)
hd3('Searching')
r('argmax', (a5,), {})
r('nanargmax', (a5,), {})
r('argmin', (a5,), {})
r('nanargmin', (a5,), {})
r('argwhere', (a5,), {})
r('nonzero', (a5,), {})
r('flatnonzero', (a5,), {})
r('where', (a5>1,), {})
r('searchsorted', (a5,a5), {})
r('extract', (lambda x : x > 1, a5), {})
# argmax(a[, axis]) Indices of the maximum values along an axis.
# nanargmax(a[, axis]) Return the indices of the maximum values in the specified axis ignoring
# argmin(a[, axis]) Return the indices of the minimum values along an axis.
# nanargmin(a[, axis]) Return the indices of the minimum values in the specified axis ignoring
# argwhere(a) Find the indices of array elements that are non-zero, grouped by element.
# nonzero(a) Return the indices of the elements that are non-zero.
# flatnonzero(a) Return indices that are non-zero in the flattened version of a.
# where(condition, [x, y]) Return elements, either from x or y, depending on condition.
# searchsorted(a, v[, side, sorter]) Find indices where elements should be inserted to maintain order.
# extract(condition, arr) Return the elements of an array that satisfy some condition.
hd3('Counting')
r('count_nonzero', (a5,), {})
#count_nonzero(a) Counts the number of non-zero values in the array a.
# histogram(a[, bins, range, normed, weights, ...]) Compute the histogram of a set of data.
# histogram2d(x, y[, bins, range, normed, weights]) Compute the bi-dimensional histogram of two data samples.
# histogramdd(sample[, bins, range, normed, ...]) Compute the multidimensional histogram of some data.
# bincount(x[, weights, minlength]) Count number of occurrences of each value in array of non-negative ints.
# digitize(x, bins[, right]) Return the indices of the bins to which each value in input array belongs.
global src
src = '<html><body><table border=1>' + src + '</table></body></html>'
open(join(split(__file__)[0], 'api_compatibility.html'), 'w').write(src)
print 'passed %d, not passed %d' % (num_passed, num_not_passed)
if __name__ == '__main__':
global which_passed
main()
print ' '.join(which_passed)