-
Notifications
You must be signed in to change notification settings - Fork 5
/
GPT2RGAX.py
1191 lines (967 loc) · 43.4 KB
/
GPT2RGAX.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#! /usr/bin/python3
r'''###############################################################################
###################################################################################
#
# GPT2RGAX.py
#
# GPT-2 with Relative Global Attention Python Module
# Experimental Version
#
# Version 1.0
#
# PLEASE NOTE THAT THIS IS A WORK IN PROGRESS
# CHECK BACK FOR UPDATES SOON
#
# Based upon a source-code of Sashmark97:
# https://github.com/Sashmark97/midigen
#
# Project Los Angeles
# Tegridy Code 2021
#
# https://github.com/Tegridy-Code/Project-Los-Angeles
#
#
###################################################################################
###################################################################################
# Copyright 2021 Project Los Angeles / Tegridy Code
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
###################################################################################
###################################################################################'''
########################################################
#
# Critical dependencies/requirements:
#
# pip install torch
# pip install tqdm
#
########################################################
print('Loading GPT2-RGA Experimental Module...')
########################################################
import glob
import os
import sys
import math
import time
import random
import pickle
import joblib
from tqdm import tqdm
import torch
from torch.utils.data import Dataset, DataLoader
from torch.optim import Adam
import torch.nn as nn
from torch.nn import functional as F
from torch.optim.lr_scheduler import LambdaLR
from torch.nn.modules.normalization import LayerNorm
from torch.nn.parameter import Parameter
from torch.nn.modules.linear import Linear
from torch.nn.modules.dropout import Dropout
from torch.nn.modules.normalization import LayerNorm
from torch.nn.init import *
from torch.nn.functional import linear, softmax, dropout
########################################################
# Constants
SEQUENCE_START = 0
RANGE_NOTE_ON = 128
RANGE_NOTE_OFF = 128
RANGE_VEL = 32
RANGE_TIME_SHIFT = 100
# Taken from the paper
ADAM_BETA_1 = 0.9
ADAM_BETA_2 = 0.98
ADAM_EPSILON = 10e-9
LR_DEFAULT_START = 1.0
SCHEDULER_WARMUP_STEPS = 4000
# LABEL_SMOOTHING_E = 0.1
# DROPOUT_P = 0.1
TOKEN_END = 256+512 # RANGE_NOTE_ON + RANGE_NOTE_OFF + RANGE_VEL + RANGE_TIME_SHIFT
TOKEN_PAD = TOKEN_END + 1
VOCAB_SIZE = TOKEN_PAD + 1
TORCH_FLOAT = torch.float32
TORCH_INT = torch.int32
TORCH_LABEL_TYPE = torch.long
PREPEND_ZEROS_WIDTH = 4
TORCH_CPU_DEVICE = torch.device("cpu")
USE_CUDA = 1
TORCH_CUDA_DEVICE = torch.device("cuda")
#====
weight_modulus = 1
print_modulus = 1
n_workers = 1
lr = None
ce_smoothing = None
batch_size = 4
random_seq = True
epochs = 5
rpr = False #'store_true'
enable_rpr = True
max_seq = 2048 # Adjusted GPT2 specs...
n_layers = 16 # Adjusted GPT2 specs...
num_heads = 16 # Adjusted GPT2 specs...
d_model = 512 # Adjusted GPT2 specs...
dim_feedforward = 2048 # Adjusted GPT2 specs...
dropout_prob = 0.1 # Adjusted GPT2 specs...
########################################################
def cpu_device():
return TORCH_CPU_DEVICE
def get_device():
if((not USE_CUDA) or (TORCH_CUDA_DEVICE is None)):
return TORCH_CPU_DEVICE
else:
return TORCH_CUDA_DEVICE
def train(cur_epoch, model, dataloader, loss, opt, lr_scheduler=None, num_iters=-1, save_checkpoint_steps=1000):
best_eval_acc = 0.0
best_eval_acc_epoch = -1
best_eval_loss = float("inf")
best_eval_loss_epoch = -1
loss_hist = []
save_steps = 0
out = -1
model.train()
with tqdm(total=len(dataloader)) as bar_train:
for batch_num, batch in enumerate(dataloader):
time_before = time.time()
opt.zero_grad()
x = batch[0].to(get_device())
tgt = batch[1].to(get_device())
y, _ = model(x)
y = y.reshape(y.shape[0] * y.shape[1], -1)
tgt = tgt.flatten()
out = loss.forward(y, tgt)
out.backward()
opt.step()
if(lr_scheduler is not None):
lr_scheduler.step()
time_after = time.time()
time_took = time_after - time_before
lr = opt.param_groups[0]['lr']
bar_train.set_description(f'Epoch: {cur_epoch} Loss: {float(out):.4} LR: {float(lr):.8}')
bar_train.update(1)
loss_hist.append(out.item())
if save_steps % save_checkpoint_steps == 0:
print('Saving model progress. Please wait...')
print('gpt2_rpr_checkpoint_' + str(cur_epoch) + '_epoch_' + str(save_steps) + '_steps_' + str(round(float(out), 4)) + '_loss.pth')
torch.save(model.state_dict(), 'gpt2_rpr_checkpoint_' + str(cur_epoch) + '_epoch_' + str(save_steps) + '_steps_' + str(round(float(out), 4)) + '_loss.pth')
print('Done! Continuing training...')
save_steps +=1
if batch_num == num_iters:
break
return loss_hist
def compute_epiano_accuracy(out, tgt):
softmax = nn.Softmax(dim=-1)
out = torch.argmax(softmax(out), dim=-1)
out = out.flatten()
tgt = tgt.flatten()
mask = (tgt != TOKEN_PAD)
out = out[mask]
tgt = tgt[mask]
if(len(tgt) == 0):
return 1.0
num_right = (out == tgt)
num_right = torch.sum(num_right).type(TORCH_FLOAT)
acc = num_right / len(tgt)
return acc
def eval_model(model, dataloader, loss, num_iters=-1):
model.eval()
avg_acc = -1
avg_loss = -1
with torch.set_grad_enabled(False):
n_test = len(dataloader)
sum_loss = 0.0
sum_acc = 0.0
with tqdm(total=len(dataloader)) as bar_eval:
for batch in dataloader:
x = batch[0].to(get_device())
tgt = batch[1].to(get_device())
y, _ = model(x)
sum_acc += float(compute_epiano_accuracy(y, tgt))
y = y.reshape(y.shape[0] * y.shape[1], -1)
tgt = tgt.flatten()
out = loss.forward(y, tgt)
sum_loss += float(out)
bar_eval.set_description(f'Loss val: {float(out):.4} Acc: {float(sum_acc / (bar_eval.n + 1)):.4}')
bar_eval.update(1)
if bar_eval.n == num_iters:
break
avg_loss = sum_loss / n_test
avg_acc = sum_acc / n_test
return avg_loss, avg_acc
class LrStepTracker:
def __init__(self, model_dim=512, warmup_steps=4000, init_steps=0):
# Store Values
self.warmup_steps = warmup_steps
self.model_dim = model_dim
self.init_steps = init_steps
# Begin Calculations
self.invsqrt_dim = (1 / math.sqrt(model_dim))
self.invsqrt_warmup = (1 / (warmup_steps * math.sqrt(warmup_steps)))
# step
def step(self, step):
step += self.init_steps
if(step <= self.warmup_steps):
return self.invsqrt_dim * self.invsqrt_warmup * step
else:
invsqrt_step = (1 / math.sqrt(step))
return self.invsqrt_dim * invsqrt_step
# get_lr
def get_lr(optimizer):
for param_group in optimizer.param_groups:
return param_group['lr']
########################################################
#@title Functions
class EPianoDataset(Dataset):
"""
----------
Author: Damon Gwinn
----------
Pytorch Dataset for the Maestro e-piano dataset (https://magenta.tensorflow.org/datasets/maestro).
Recommended to use with Dataloader (https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader)
Uses all files found in the given root directory of pre-processed (preprocess_midi.py)
Maestro midi files.
----------
"""
def __init__(self, midi_list, max_seq=2048, random_seq=True):
self.max_seq = max_seq
self.random_seq = random_seq
self.data_files = midi_list
def __len__(self):
"""
----------
Author: Damon Gwinn
----------
How many data files exist in the given directory
----------
"""
return len(self.data_files)
def __getitem__(self, idx):
"""
----------
Author: Damon Gwinn
----------
Gets the indexed midi batch. Gets random sequence or from start depending on random_seq.
Returns the input and the target.
----------
"""
raw_mid = torch.tensor(self.data_files, dtype=TORCH_LABEL_TYPE, device=cpu_device())
x, tgt = process_midi(raw_mid, self.max_seq, self.random_seq)
return x, tgt
def process_midi(raw_mid, max_seq, random_seq):
"""
----------
Author: Damon Gwinn
----------
Takes in pre-processed raw midi and returns the input and target. Can use a random sequence or
go from the start based on random_seq.
----------
"""
x = torch.full((max_seq, ), TOKEN_PAD, dtype=TORCH_LABEL_TYPE, device=cpu_device())
tgt = torch.full((max_seq, ), TOKEN_PAD, dtype=TORCH_LABEL_TYPE, device=cpu_device())
raw_len = len(raw_mid)
full_seq = max_seq + 1 # Performing seq2seq
if(raw_len == 0):
return x, tgt
start = 0
end = 0
# Randomly selecting a range
if (random_seq):
end_range = raw_len - full_seq
start = random.randint(abs(SEQUENCE_START), abs(end_range))
# Always taking from the start to as far as we can
else:
start = SEQUENCE_START
end = start + full_seq
data = raw_mid[start:end]
x = data[:max_seq]
tgt = data[1:full_seq]
return x, tgt
########################################################
class CausalSelfAttention(nn.Module):
"""
A vanilla multi-head masked self-attention layer with a projection at the end.
It is possible to use torch.nn.MultiheadAttention here but I am including an
explicit implementation here to show that there is nothing too scary here.
"""
def __init__(self, config):
super().__init__()
assert config.n_embd % config.n_head == 0
# key, query, value projections for all heads
self.key = nn.Linear(config.n_embd, config.n_embd)
self.query = nn.Linear(config.n_embd, config.n_embd)
self.value = nn.Linear(config.n_embd, config.n_embd)
# regularization
self.attn_drop = nn.Dropout(config.attn_pdrop)
self.resid_drop = nn.Dropout(config.resid_pdrop)
# output projection
self.proj = nn.Linear(config.n_embd, config.n_embd)
# causal mask to ensure that attention is only applied to the left in the input sequence
self.register_buffer("mask", torch.tril(torch.ones(config.block_size, config.block_size))
.view(1, 1, config.block_size, config.block_size))
self.n_head = config.n_head
def forward(self, x, layer_past=None):
B, T, C = x.size()
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
k = self.key(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
q = self.query(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
v = self.value(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
# causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
att = att.masked_fill(self.mask[:,:,:T,:T] == 0, float('-inf'))
att = F.softmax(att, dim=-1)
att = self.attn_drop(att)
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
# output projection
y = self.resid_drop(self.proj(y))
return y
class Block(nn.Module):
""" an unassuming Transformer block """
def __init__(self, config):
super().__init__()
self.ln1 = nn.LayerNorm(config.n_embd)
self.ln2 = nn.LayerNorm(config.n_embd)
self.enable_rpr = config.enable_rpr
if config.enable_rpr:
self.attn = MultiheadAttentionRPR(config.n_embd, config.n_head, config.attn_pdrop, er_len=config.er_len)
else:
self.attn = CausalSelfAttention(config)
self.mlp = nn.Sequential(
nn.Linear(config.n_embd, config.dim_feedforward),
nn.GELU(),
nn.Linear(config.dim_feedforward, config.n_embd),
nn.Dropout(config.resid_pdrop),
)
def forward(self, x, mask=None):
if self.enable_rpr:
x = x + self.attn(self.ln1(x), self.ln1(x), self.ln1(x), attn_mask=mask)[0]
else:
x = x + self.attn(self.ln1(x))
x = x + self.mlp(self.ln2(x))
return x
class MultiheadAttentionRPR(nn.Module):
"""
----------
Author: Pytorch
Modified: Damon Gwinn
----------
For Relative Position Representation support (https://arxiv.org/abs/1803.02155)
https://pytorch.org/docs/1.2.0/_modules/torch/nn/modules/activation.html#MultiheadAttention
Modification to add RPR embedding Er and call custom multi_head_attention_forward_rpr
----------
"""
def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False,
add_zero_attn=False, kdim=None, vdim=None, er_len=None):
super(MultiheadAttentionRPR, self).__init__()
self.embed_dim = embed_dim
self.kdim = kdim if kdim is not None else embed_dim
self.vdim = vdim if vdim is not None else embed_dim
self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
self.in_proj_weight = Parameter(torch.empty(3 * embed_dim, embed_dim))
if self._qkv_same_embed_dim is False:
self.q_proj_weight = Parameter(torch.Tensor(embed_dim, embed_dim))
self.k_proj_weight = Parameter(torch.Tensor(embed_dim, self.kdim))
self.v_proj_weight = Parameter(torch.Tensor(embed_dim, self.vdim))
if bias:
self.in_proj_bias = Parameter(torch.empty(3 * embed_dim))
else:
self.register_parameter('in_proj_bias', None)
self.out_proj = Linear(embed_dim, embed_dim, bias=bias)
if add_bias_kv:
self.bias_k = Parameter(torch.empty(1, 1, embed_dim))
self.bias_v = Parameter(torch.empty(1, 1, embed_dim))
else:
self.bias_k = self.bias_v = None
self.add_zero_attn = add_zero_attn
# Adding RPR embedding matrix
if(er_len is not None):
self.Er = Parameter(torch.rand((er_len, self.head_dim), dtype=torch.float32))
else:
self.Er = None
self._reset_parameters()
def _reset_parameters(self):
if self._qkv_same_embed_dim:
xavier_uniform_(self.in_proj_weight)
else:
xavier_uniform_(self.q_proj_weight)
xavier_uniform_(self.k_proj_weight)
xavier_uniform_(self.v_proj_weight)
if self.in_proj_bias is not None:
constant_(self.in_proj_bias, 0.)
constant_(self.out_proj.bias, 0.)
if self.bias_k is not None:
xavier_normal_(self.bias_k)
if self.bias_v is not None:
xavier_normal_(self.bias_v)
def forward(self, query, key, value, key_padding_mask=None,
need_weights=True, attn_mask=None):
if hasattr(self, '_qkv_same_embed_dim') and self._qkv_same_embed_dim is False:
# return F.multi_head_attention_forward(
# query, key, value, self.embed_dim, self.num_heads,
# self.in_proj_weight, self.in_proj_bias,
# self.bias_k, self.bias_v, self.add_zero_attn,
# self.dropout, self.out_proj.weight, self.out_proj.bias,
# training=self.training,
# key_padding_mask=key_padding_mask, need_weights=need_weights,
# attn_mask=attn_mask, use_separate_proj_weight=True,
# q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight,
# v_proj_weight=self.v_proj_weight)
return multi_head_attention_forward_rpr(
query, key, value, self.embed_dim, self.num_heads,
self.in_proj_weight, self.in_proj_bias,
self.bias_k, self.bias_v, self.add_zero_attn,
self.dropout, self.out_proj.weight, self.out_proj.bias,
training=self.training,
key_padding_mask=key_padding_mask, need_weights=need_weights,
attn_mask=attn_mask, use_separate_proj_weight=True,
q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight,
v_proj_weight=self.v_proj_weight, rpr_mat=self.Er)
else:
if not hasattr(self, '_qkv_same_embed_dim'):
warnings.warn('A new version of MultiheadAttention module has been implemented. \
Please re-train your model with the new module',
UserWarning)
# return F.multi_head_attention_forward(
# query, key, value, self.embed_dim, self.num_heads,
# self.in_proj_weight, self.in_proj_bias,
# self.bias_k, self.bias_v, self.add_zero_attn,
# self.dropout, self.out_proj.weight, self.out_proj.bias,
# training=self.training,
# key_padding_mask=key_padding_mask, need_weights=need_weights,
# attn_mask=attn_mask)
return multi_head_attention_forward_rpr(
query, key, value, self.embed_dim, self.num_heads,
self.in_proj_weight, self.in_proj_bias,
self.bias_k, self.bias_v, self.add_zero_attn,
self.dropout, self.out_proj.weight, self.out_proj.bias,
training=self.training,
key_padding_mask=key_padding_mask, need_weights=need_weights,
attn_mask=attn_mask, rpr_mat=self.Er)
# multi_head_attention_forward_rpr
def multi_head_attention_forward_rpr(query, # type: Tensor
key, # type: Tensor
value, # type: Tensor
embed_dim_to_check, # type: int
num_heads, # type: int
in_proj_weight, # type: Tensor
in_proj_bias, # type: Tensor
bias_k, # type: Optional[Tensor]
bias_v, # type: Optional[Tensor]
add_zero_attn, # type: bool
dropout_p, # type: float
out_proj_weight, # type: Tensor
out_proj_bias, # type: Tensor
training=True, # type: bool
key_padding_mask=None, # type: Optional[Tensor]
need_weights=True, # type: bool
attn_mask=None, # type: Optional[Tensor]
use_separate_proj_weight=False, # type: bool
q_proj_weight=None, # type: Optional[Tensor]
k_proj_weight=None, # type: Optional[Tensor]
v_proj_weight=None, # type: Optional[Tensor]
static_k=None, # type: Optional[Tensor]
static_v=None, # type: Optional[Tensor]
rpr_mat=None
):
'''
print('Query: ', query.shape, 'Key: ', key.shape, 'Value: ', value.shape)
print('Equal: ', torch.equal(query, key) and torch.equal(key, value))
print('embed_dim_to_check: ', embed_dim_to_check)
print('num_heads:', num_heads)
print('in_proj_weight: ', in_proj_weight.shape)
print('in_proj_bias: ', in_proj_bias.shape)
print('bias_k:', bias_k, 'bias_v', bias_v)
print('add_zero_attn:', add_zero_attn)
print('dropout_p: ', dropout_p)
print('out_proj_weight: ', out_proj_weight.shape)
print('out_proj_bias:', out_proj_bias.shape)
print('training:', training)
print('need_weights:', need_weights)
print('use_separate_proj_weight:', use_separate_proj_weight)
print('key_padding_mask:', key_padding_mask)
print('attn_mask:', attn_mask.shape)
print('q_proj_weight:', q_proj_weight)
print('k_proj_weight:', k_proj_weight)
print('v_proj_weight:', v_proj_weight)
print('static_k:', static_k)
print('static_v:', static_v)
print('rpr_mat:', rpr_mat.shape)
'''
"""
----------
Author: Pytorch
Modified: Damon Gwinn
----------
For Relative Position Representation support (https://arxiv.org/abs/1803.02155)
https://pytorch.org/docs/1.2.0/_modules/torch/nn/functional.html
Modification to take RPR embedding matrix and perform skew optimized RPR (https://arxiv.org/abs/1809.04281)
----------
"""
# type: (...) -> Tuple[Tensor, Optional[Tensor]]
qkv_same = torch.equal(query, key) and torch.equal(key, value)
kv_same = torch.equal(key, value)
tgt_len, bsz, embed_dim = query.size()
assert embed_dim == embed_dim_to_check
assert list(query.size()) == [tgt_len, bsz, embed_dim]
assert key.size() == value.size()
head_dim = embed_dim // num_heads
assert head_dim * num_heads == embed_dim, "embed_dim must be divisible by num_heads"
scaling = float(head_dim) ** -0.5
if use_separate_proj_weight is not True:
if qkv_same:
# self-attention
q, k, v = linear(query, in_proj_weight, in_proj_bias).chunk(3, dim=-1)
elif kv_same:
# encoder-decoder attention
# This is inline in_proj function with in_proj_weight and in_proj_bias
_b = in_proj_bias
_start = 0
_end = embed_dim
_w = in_proj_weight[_start:_end, :]
if _b is not None:
_b = _b[_start:_end]
q = linear(query, _w, _b)
if key is None:
assert value is None
k = None
v = None
else:
# This is inline in_proj function with in_proj_weight and in_proj_bias
_b = in_proj_bias
_start = embed_dim
_end = None
_w = in_proj_weight[_start:, :]
if _b is not None:
_b = _b[_start:]
k, v = linear(key, _w, _b).chunk(2, dim=-1)
else:
# This is inline in_proj function with in_proj_weight and in_proj_bias
_b = in_proj_bias
_start = 0
_end = embed_dim
_w = in_proj_weight[_start:_end, :]
if _b is not None:
_b = _b[_start:_end]
q = linear(query, _w, _b)
# This is inline in_proj function with in_proj_weight and in_proj_bias
_b = in_proj_bias
_start = embed_dim
_end = embed_dim * 2
_w = in_proj_weight[_start:_end, :]
if _b is not None:
_b = _b[_start:_end]
k = linear(key, _w, _b)
# This is inline in_proj function with in_proj_weight and in_proj_bias
_b = in_proj_bias
_start = embed_dim * 2
_end = None
_w = in_proj_weight[_start:, :]
if _b is not None:
_b = _b[_start:]
v = linear(value, _w, _b)
else:
q_proj_weight_non_opt = torch.jit._unwrap_optional(q_proj_weight)
len1, len2 = q_proj_weight_non_opt.size()
assert len1 == embed_dim and len2 == query.size(-1)
k_proj_weight_non_opt = torch.jit._unwrap_optional(k_proj_weight)
len1, len2 = k_proj_weight_non_opt.size()
assert len1 == embed_dim and len2 == key.size(-1)
v_proj_weight_non_opt = torch.jit._unwrap_optional(v_proj_weight)
len1, len2 = v_proj_weight_non_opt.size()
assert len1 == embed_dim and len2 == value.size(-1)
if in_proj_bias is not None:
q = linear(query, q_proj_weight_non_opt, in_proj_bias[0:embed_dim])
k = linear(key, k_proj_weight_non_opt, in_proj_bias[embed_dim:(embed_dim * 2)])
v = linear(value, v_proj_weight_non_opt, in_proj_bias[(embed_dim * 2):])
else:
q = linear(query, q_proj_weight_non_opt, in_proj_bias)
k = linear(key, k_proj_weight_non_opt, in_proj_bias)
v = linear(value, v_proj_weight_non_opt, in_proj_bias)
q = q * scaling
if bias_k is not None and bias_v is not None:
if static_k is None and static_v is None:
k = torch.cat([k, bias_k.repeat(1, bsz, 1)])
v = torch.cat([v, bias_v.repeat(1, bsz, 1)])
if attn_mask is not None:
attn_mask = torch.cat([attn_mask,
torch.zeros((attn_mask.size(0), 1),
dtype=attn_mask.dtype,
device=attn_mask.device)], dim=1)
if key_padding_mask is not None:
key_padding_mask = torch.cat(
[key_padding_mask, torch.zeros((key_padding_mask.size(0), 1),
dtype=key_padding_mask.dtype,
device=key_padding_mask.device)], dim=1)
else:
assert static_k is None, "bias cannot be added to static key."
assert static_v is None, "bias cannot be added to static value."
else:
assert bias_k is None
assert bias_v is None
q = q.contiguous().view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
if k is not None:
k = k.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
if v is not None:
v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
if static_k is not None:
assert static_k.size(0) == bsz * num_heads
assert static_k.size(2) == head_dim
k = static_k
if static_v is not None:
assert static_v.size(0) == bsz * num_heads
assert static_v.size(2) == head_dim
v = static_v
src_len = k.size(1)
if key_padding_mask is not None:
assert key_padding_mask.size(0) == bsz
assert key_padding_mask.size(1) == src_len
if add_zero_attn:
src_len += 1
k = torch.cat([k, torch.zeros((k.size(0), 1) + k.size()[2:], dtype=k.dtype, device=k.device)], dim=1)
v = torch.cat([v, torch.zeros((v.size(0), 1) + v.size()[2:], dtype=v.dtype, device=v.device)], dim=1)
if attn_mask is not None:
attn_mask = torch.cat([attn_mask, torch.zeros((attn_mask.size(0), 1),
dtype=attn_mask.dtype,
device=attn_mask.device)], dim=1)
if key_padding_mask is not None:
key_padding_mask = torch.cat(
[key_padding_mask, torch.zeros((key_padding_mask.size(0), 1),
dtype=key_padding_mask.dtype,
device=key_padding_mask.device)], dim=1)
attn_output_weights = torch.bmm(q, k.transpose(1, 2))
assert list(attn_output_weights.size()) == [bsz * num_heads, tgt_len, src_len]
######### ADDITION OF RPR ###########
if(rpr_mat is not None):
rpr_mat = _get_valid_embedding(rpr_mat, q.shape[1], k.shape[1])
qe = torch.einsum("hld,md->hlm", q, rpr_mat)
srel = _skew(qe)
attn_output_weights += srel
if attn_mask is not None:
attn_mask = attn_mask.unsqueeze(0)
attn_output_weights += attn_mask
if key_padding_mask is not None:
attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
attn_output_weights = attn_output_weights.masked_fill(
key_padding_mask.unsqueeze(1).unsqueeze(2),
float('-inf'),
)
attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, src_len)
attn_output_weights = softmax(
attn_output_weights, dim=-1)
attn_output_weights = dropout(attn_output_weights, p=dropout_p, training=training)
attn_output = torch.bmm(attn_output_weights, v)
assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim]
attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
if need_weights:
# average attention weights over heads
attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
return attn_output, attn_output_weights.sum(dim=1) / num_heads
else:
return attn_output, None
def _get_valid_embedding(Er, len_q, len_k):
"""
----------
Author: Damon Gwinn
----------
Gets valid embeddings based on max length of RPR attention
----------
"""
len_e = Er.shape[0]
start = max(0, len_e - len_q)
return Er[start:, :]
def _skew(qe):
"""
----------
Author: Damon Gwinn
----------
Performs the skew optimized RPR computation (https://arxiv.org/abs/1809.04281)
----------
"""
sz = qe.shape[1]
mask = (torch.triu(torch.ones(sz, sz).to(qe.device)) == 1).float().flip(0)
qe = mask * qe
qe = F.pad(qe, (1,0, 0,0, 0,0))
qe = torch.reshape(qe, (qe.shape[0], qe.shape[2], qe.shape[1]))
srel = qe[:, 1:, :]
return srel
class GPT(nn.Module):
""" the full GPT language model, with a context size of block_size """
def __init__(self, config):
super().__init__()
# input embedding stem
self.tok_emb = nn.Embedding(config.vocab_size, config.n_embd)
self.pos_emb = nn.Parameter(torch.zeros(1, config.block_size, config.n_embd))
self.drop = nn.Dropout(config.embd_pdrop)
# transformer
self.blocks = nn.Sequential(*[Block(config) for _ in range(config.n_layer)])
# decoder head
self.ln_f = nn.LayerNorm(config.n_embd)
self.head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
self.softmax = nn.Softmax(dim=-1)
self.enable_rpr = config.enable_rpr
self.block_size = config.block_size
self.apply(self._init_weights)
logger.info("number of parameters: %e", sum(p.numel() for p in self.parameters()))
def get_block_size(self):
return self.block_size
def _init_weights(self, module):
if isinstance(module, (nn.Linear, nn.Embedding)):
module.weight.data.normal_(mean=0.0, std=0.02)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def configure_optimizers(self, train_config):
"""
This long function is unfortunately doing something very simple and is being very defensive:
We are separating out all parameters of the model into two buckets: those that will experience
weight decay for regularization and those that won't (biases, and layernorm/embedding weights).
We are then returning the PyTorch optimizer object.
"""
# separate out all parameters to those that will and won't experience regularizing weight decay
decay = set()
no_decay = set()
whitelist_weight_modules = (torch.nn.Linear, )
blacklist_weight_modules = (torch.nn.LayerNorm, torch.nn.Embedding)
for mn, m in self.named_modules():
for pn, p in m.named_parameters():
fpn = '%s.%s' % (mn, pn) if mn else pn # full param name
if pn.endswith('bias'):
# all biases will not be decayed
no_decay.add(fpn)
elif pn.endswith('weight') and isinstance(m, whitelist_weight_modules):
# weights of whitelist modules will be weight decayed
decay.add(fpn)
elif pn.endswith('weight') and isinstance(m, blacklist_weight_modules):
# weights of blacklist modules will NOT be weight decayed
no_decay.add(fpn)
# special case the position embedding parameter in the root GPT module as not decayed
no_decay.add('pos_emb')
# validate that we considered every parameter
param_dict = {pn: p for pn, p in self.named_parameters()}
inter_params = decay & no_decay
union_params = decay | no_decay
assert len(inter_params) == 0, "parameters %s made it into both decay/no_decay sets!" % (str(inter_params), )
assert len(param_dict.keys() - union_params) == 0, "parameters %s were not separated into either decay/no_decay set!" \
% (str(param_dict.keys() - union_params), )
# create the pytorch optimizer object
optim_groups = [
{"params": [param_dict[pn] for pn in sorted(list(decay))], "weight_decay": train_config.weight_decay},
{"params": [param_dict[pn] for pn in sorted(list(no_decay))], "weight_decay": 0.0},
]
optimizer = torch.optim.AdamW(optim_groups, lr=train_config.learning_rate, betas=train_config.betas)
return optimizer
def forward(self, idx, targets=None):
b, t = idx.size()
if self.enable_rpr:
mask = generate_square_subsequent_mask(t).to(get_device())
else:
mask = None
assert t <= self.block_size, "Cannot forward, model block size is exhausted."
# forward the GPT model
token_embeddings = self.tok_emb(idx) # each index maps to a (learnable) vector
position_embeddings = self.pos_emb[:, :t, :] # each position maps to a (learnable) vector
x = self.drop(token_embeddings + position_embeddings)
if self.enable_rpr:
x = x.permute(1,0,2)
for module in self.blocks:
x = module(x, mask=mask)
x = x.permute(1,0,2)
else:
x = self.blocks(x)
x = self.ln_f(x)
logits = self.head(x)
# if we are given some desired targets also calculate the loss
loss = None
if targets is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
if self.enable_rpr:
del mask
return logits, loss
def generate(self, primer=None, target_seq_length=1024, beam=0, beam_chance=1.0, temperature=0,
stop_token=TOKEN_END, verbose=True):
assert (not self.training), "Cannot generate while in training mode"
if verbose: print("Generating sequence of max length:", target_seq_length)
gen_seq = torch.full((1,target_seq_length), TOKEN_PAD, dtype=TORCH_LABEL_TYPE, device=get_device())
num_primer = len(primer)
gen_seq[..., :num_primer] = primer.type(TORCH_LABEL_TYPE).to(get_device())
cur_i = num_primer
while(cur_i < target_seq_length):
logits, _ = self.forward(gen_seq[..., :cur_i])
y = self.softmax(logits)[..., :stop_token+1]
token_probs = y[:, cur_i-1, :] / (temperature if temperature > 0 else 1.)
if(beam == 0):
beam_ran = 2.0
else:
beam_ran = random.uniform(0,1)
if(beam_ran <= beam_chance):
token_probs = token_probs.flatten()
top_res, top_i = torch.topk(token_probs, beam)
beam_rows = top_i // VOCAB_SIZE
beam_cols = top_i % VOCAB_SIZE
gen_seq = gen_seq[beam_rows, :]
gen_seq[..., cur_i] = beam_cols
else:
distrib = torch.distributions.categorical.Categorical(probs=token_probs)