forked from facebookresearch/vissl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathobject_detection_benchmark.py
83 lines (67 loc) · 2.39 KB
/
object_detection_benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# Copyright (c) Facebook, Inc. and its affiliates.
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
Full credits: https://github.com/facebookresearch/moco/blob/main/detection/train_net.py # NOQA
"""
import os
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.engine import (
default_argument_parser,
default_setup,
DefaultTrainer,
launch as d2_launch,
)
from detectron2.evaluation import COCOEvaluator, PascalVOCDetectionEvaluator
from detectron2.layers import get_norm
from detectron2.modeling.roi_heads import Res5ROIHeads, ROI_HEADS_REGISTRY
@ROI_HEADS_REGISTRY.register()
class Res5ROIHeadsExtraNorm(Res5ROIHeads):
"""
As described in the MOCO paper, there is an extra BN layer
following the res5 stage.
"""
def __init__(self, cfg, input_shape):
super().__init__(cfg, input_shape)
norm = cfg.MODEL.RESNETS.NORM
norm = get_norm(norm, self.res5[-1].out_channels)
self.res5.add_module("norm", norm)
class Trainer(DefaultTrainer):
@classmethod
def build_evaluator(cls, cfg, dataset_name, output_folder=None):
if output_folder is None:
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
if "coco" in dataset_name:
return COCOEvaluator(dataset_name, cfg, True, output_folder)
else:
assert "voc" in dataset_name, "Dataset must be coco or voc"
return PascalVOCDetectionEvaluator(dataset_name)
def main(args):
# setup the config file
cfg = get_cfg()
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
default_setup(cfg, args)
if args.eval_only:
model = Trainer.build_model(cfg)
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
cfg.MODEL.WEIGHTS, resume=args.resume
)
res = Trainer.test(cfg, model)
return res
trainer = Trainer(cfg)
trainer.resume_or_load(resume=args.resume)
return trainer.train()
if __name__ == "__main__":
args = default_argument_parser().parse_args()
print("Arguments:", args)
d2_launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)