forked from facebookresearch/vissl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcluster_features_and_label.py
245 lines (211 loc) · 9.58 KB
/
cluster_features_and_label.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
# Copyright (c) Facebook, Inc. and its affiliates.
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
This script provides capability to cluster features into certain number clusters
using FAISS and assigning the hard labels to the dataset.
"""
import logging
import os
import sys
from argparse import Namespace
from typing import Any, List, Optional
import numpy as np
import torch
from iopath.common.file_io import g_pathmgr
from vissl.config import AttrDict
from vissl.data import build_dataset
from vissl.hooks import default_hook_generator
from vissl.utils.checkpoint import get_checkpoint_folder
from vissl.utils.distributed_launcher import launch_distributed
from vissl.utils.env import set_env_vars, setup_path_manager
from vissl.utils.extract_features_utils import ExtractedFeaturesLoader
from vissl.utils.hydra_config import compose_hydra_configuration, convert_to_attrdict
from vissl.utils.io import save_file
from vissl.utils.logger import setup_logging, shutdown_logging
from vissl.utils.misc import is_faiss_available, set_seeds
from vissl.utils.pca import PCA
def get_data_features_for_k_means(cfg: AttrDict):
"""
Sample the extract features from disk by reading through the
extracted feature shards and return a sub-set
"""
return ExtractedFeaturesLoader.sample_features(
input_dir=cfg.CLUSTERFIT.FEATURES.PATH,
split=cfg.CLUSTERFIT.FEATURES.DATA_PARTITION.lower(),
layer=cfg.CLUSTERFIT.FEATURES.LAYER_NAME,
num_samples=cfg.CLUSTERFIT.DATA_LIMIT,
seed=cfg.CLUSTERFIT.DATA_LIMIT_SAMPLING.SEED,
flatten_features=True,
)
def get_image_paths(cfg: AttrDict, split: str) -> List[str]:
"""
Get the list of image path for the provided dataset and split
"""
dataset = build_dataset(cfg=cfg, split=split)
feature_image_paths = dataset.get_image_paths()
# due to multi-modality, we get image_paths as a nested list, one for each
# dataset. Check it's a list and extract images.
assert type(feature_image_paths) == list, "Image paths must be a list"
assert len(feature_image_paths) == 1, "Multi-modality not supported yet!"
return feature_image_paths[0]
def cluster_features(cfg: AttrDict):
assert is_faiss_available(), (
"Please install faiss using conda install faiss-gpu -c pytorch "
"if using conda or pip install faiss-gpu"
)
import faiss
num_clusters = cfg.CLUSTERFIT.NUM_CLUSTERS
cluster_backend = cfg.CLUSTERFIT.CLUSTER_BACKEND
data_split = cfg.CLUSTERFIT.FEATURES.DATA_PARTITION
# Step 1: get a sub-sample of the extract features on the whole dataset
# in order to compute the centroids
feature_data = get_data_features_for_k_means(cfg)
features = feature_data["features"]
assert features.ndim == 2, f"Invalid feature shape: {features.shape}"
assert features.dtype == np.float32, "Features are not float32 type"
logging.info(f"Loaded features: {features.shape}")
# Step 2: normalize the features and apply dimensionality reduction
logging.info("Normalizing the features...")
feat_norm = np.linalg.norm(features, axis=1) + 1e-5
features = features / feat_norm[:, np.newaxis]
with_dimensionality_reduction = cfg.CLUSTERFIT.FEATURES.DIMENSIONALITY_REDUCTION > 0
if with_dimensionality_reduction:
pca = PCA(n_components=cfg.CLUSTERFIT.FEATURES.DIMENSIONALITY_REDUCTION)
features = pca.fit_transform(features)
features = np.ascontiguousarray(features)
features_dim = cfg.CLUSTERFIT.FEATURES.DIMENSIONALITY_REDUCTION
else:
pca = None
features_dim = features.shape[1]
# Step 3: compute the centroids for the sub-sampled features
logging.info(
f"Clustering {features.shape[0]} features in {num_clusters} clusters..."
)
assert cluster_backend == "faiss", "Only faiss clustering is supported currently"
use_gpu = torch.cuda.device_count() > 0
num_iter = cfg.CLUSTERFIT.NUM_ITER
kmeans = faiss.Kmeans(
features.shape[1], num_clusters, niter=num_iter, verbose=True, gpu=use_gpu
)
kmeans.train(features)
# Step 4: compute the cluster assignment for each of the features of the dataset
# by streaming through the features (to avoid OOM) and save clustering data
# and hard cluster labels for the images
_create_dataset_split(cfg, data_split, features_dim, kmeans, pca)
if cfg.CLUSTERFIT.FEATURES.TEST_PARTITION:
test_split = cfg.CLUSTERFIT.FEATURES.TEST_PARTITION
_create_dataset_split(cfg, test_split, features_dim, kmeans, pca)
logging.info("All Done!")
def _create_dataset_split(
cfg: AttrDict, data_split: str, features_dim: int, kmeans, pca: Optional[PCA] = None
):
"""
Scan the dataset split and create a new classification dataset out of it
where each image is associated to the centroid the closest in feature space.
"""
num_clusters = cfg.CLUSTERFIT.NUM_CLUSTERS
data_name = cfg.CLUSTERFIT.FEATURES.DATASET_NAME
layer_name = cfg.CLUSTERFIT.FEATURES.LAYER_NAME
logging.info(
f"Computing cluster label assignment for each sample in {data_split}..."
)
indices = []
distances = []
target_clusters = []
shard_paths = ExtractedFeaturesLoader.get_shard_file_names(
input_dir=cfg.CLUSTERFIT.FEATURES.PATH,
split=data_split.lower(),
layer=cfg.CLUSTERFIT.FEATURES.LAYER_NAME,
)
for shard_path in shard_paths:
shard_content = ExtractedFeaturesLoader.load_feature_shard(shard_path)
shard_features = shard_content.features
# TODO - factorize this with above??? normalization at least???
# Reshape and normalize the loaded features
shard_features = shard_features.reshape(shard_features.shape[0], -1)
shard_features_norm = np.linalg.norm(shard_features, axis=1) + 1e-5
shard_features = shard_features / shard_features_norm[:, np.newaxis]
if pca is not None:
shard_features = pca.transform(shard_features)
shard_features = np.ascontiguousarray(shard_features)
shard_distances, shard_cluster_labels = kmeans.index.search(shard_features, 1)
indices.extend(shard_content.indices)
distances.extend(shard_distances)
target_clusters.extend(shard_cluster_labels)
# Step 5: save clustering data and hard cluster labels for the images
logging.info("Saving centroids and cluster assignments to file...")
dataset_image_paths = get_image_paths(cfg, split=data_split)
image_paths = [dataset_image_paths[i] for i in indices]
data_split = data_split.lower()
clustering_output_dict = {
"sample_indices": indices,
"hard_labels": target_clusters,
"centroids": kmeans.centroids,
"distances": distances,
"images": image_paths,
}
output_dir = cfg.CLUSTERFIT.OUTPUT_DIR
g_pathmgr.mkdirs(output_dir)
output_prefix = (
f"{data_name}_{data_split}_{layer_name}_N{num_clusters}_D{features_dim}"
)
cluster_output_filepath = os.path.join(output_dir, f"{output_prefix}.pkl")
labels_output_filepath = os.path.join(output_dir, f"{output_prefix}_labels.npy")
image_path_filepath = os.path.join(output_dir, f"{output_prefix}_images.npy")
out_images = np.array(image_paths)
out_hard_labels = np.array(target_clusters, dtype=np.int64).reshape(-1)
save_file(clustering_output_dict, cluster_output_filepath)
save_file(out_images, image_path_filepath)
save_file(out_hard_labels, labels_output_filepath)
def main(args: Namespace, cfg: AttrDict):
setup_logging(__name__, output_dir=get_checkpoint_folder(cfg))
# Extract the features if the feature extract is enabled
if cfg.CLUSTERFIT.FEATURES.EXTRACT:
# We cannot have automatic extraction with more than 1 node or otherwise
# we would have to run this script on several nodes and thus have several
# parallel clustering of the features. The automatic extraction is only
# there as a shortcut when running on a single node
assert (
cfg.DISTRIBUTED.NUM_NODES == 1
), "Automatic extraction can only work with 1 node"
# Make sure to dump the features at the desired path
cfg.CHECKPOINT.DIR = cfg.CLUSTERFIT.FEATURES.PATH
cfg.CHECKPOINT.APPEND_DISTR_RUN_ID = False
# Run the extraction of features
set_env_vars(local_rank=0, node_id=0, cfg=cfg)
logging.info("Setting seed....")
set_seeds(cfg, args.node_id)
launch_distributed(
cfg,
args.node_id,
engine_name="extract_features",
hook_generator=default_hook_generator,
)
# Else setup the path manager (done in set_env_vars) in
# case of feature extraction above
else:
setup_path_manager()
cluster_features(cfg)
shutdown_logging()
def hydra_main(overrides: List[Any]):
cfg = compose_hydra_configuration(overrides)
args, config = convert_to_attrdict(cfg)
main(args, config)
if __name__ == "__main__":
"""
Example usage:
```
python tools/cluster_features_and_label.py
config=pretrain/clusterfit/clusterfit_resnet_8gpu_imagenet
config.CLUSTERFIT.FEATURES.PATH=/path/to/extracted/features
config.CLUSTERFIT.FEATURES.LAYER_NAME=heads
config.CLUSTERFIT.FEATURES.DATA_PARTITION=TRAIN
config.CLUSTERFIT.FEATURES.TEST_PARTITION=TEST
config.CLUSTERFIT.OUTPUT_DIR=/path/to/output/dataset
config.CLUSTERFIT.NUM_CLUSTERS=160000
config.CLUSTERFIT.FEATURES.DATASET_NAME=imagenette160
```
"""
overrides = sys.argv[1:]
hydra_main(overrides=overrides)