forked from stanfordnlp/pyvene
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
316 lines (273 loc) · 13.2 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import os, random, argparse, sys, pickle, time
import torch
from tqdm import tqdm, trange
import numpy as np
import pandas as pd
os.environ["TOKENIZERS_PARALLELISM"] = "false"
from datasets import Dataset
from torch.utils.data import DataLoader
import wandb
from dataclasses import dataclass, field
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
from transformers.utils import logging
logging.set_verbosity_info()
logger = logging.get_logger("transformers")
"""
This code is designed for alignment search
for large models, i.e., >1B parameters.
We test it out with Alpaca 7B which is based
on LLaMA 7B model, but it should be extensible
to larger models as well if computation resource
is allowed.
"""
CACHE_DIR = "../.cache/"
class AlpacaAligner(object):
def __init__(
self, model,
is_master,
logger,
args,
lr=5e-5,
apex_enable=False,
n_gpu=1,
gpu_id=0,
early_stopping=5,
do_statistic=False,
model_name="",
device="cuda"
):
self.model = model
num_params = count_parameters(model)
logger.info(f'Number of Alpaca-7B model params: {num_params}')
self.is_master = is_master
self.logger = logger
self.is_wandb = args.is_wandb
self.model_name = model_name
self.lr = lr
self.n_gpu = n_gpu
self.device = device
self.early_stopping = early_stopping
if args.is_wandb and is_master:
import wandb
run = wandb.init(
project=f"Boundless-DAS-{args.task_name}",
entity=args.wandb_username,
name=model_name,
)
wandb.config.update(args)
def save_model(self, output_dir, model_name):
if self.n_gpu > 1:
torch.save({
'rotate_layer': self.model.module.model.rotate_layer.state_dict(),
'intervention_boundaries': self.model.module.model.intervention_boundaries,
'temperature': self.model.module.model.temperature
}, os.path.join(output_dir, model_name))
else:
torch.save({
'rotate_layer': self.model.model.rotate_layer.state_dict(),
'intervention_boundaries': self.model.model.intervention_boundaries,
'temperature': self.model.model.temperature
}, os.path.join(output_dir, model_name))
def prealign_eval(self, prealign_dataloader, output_dir):
total_count = 0
correct_count = 0
self.model.eval()
with torch.no_grad():
for step, inputs in enumerate(prealign_dataloader):
for k, v in inputs.items():
if v is not None and isinstance(v, torch.Tensor):
inputs[k] = v.to(self.device)
# aligning forward!
outputs = self.model(
input_ids=inputs['input_ids'],
labels=inputs['labels']
)
actual_test_labels = inputs['labels'][:, -1]
pred_test_labels = torch.argmax(outputs.logits[:, -1], dim=-1)
correct_labels = (actual_test_labels==pred_test_labels)
total_count += len(correct_labels)
correct_count += correct_labels.sum().tolist()
current_acc = round(correct_count/total_count, 2)
logger.info(f"[WARNING: THIS NEEDS TO BE GOOD!] prealign task accuracy: {current_acc}")
if self.is_master and not self.is_wandb:
log_prealign = open(os.path.join(output_dir, 'prealign_log.txt'), 'w', buffering=1)
print(f'prealign_accuracy,{current_acc}', file=log_prealign)
log_prealign.close()
elif self.is_wandb:
wandb.log(
{
"eval/prealign_accuracy": current_acc
},
step=0
)
def train(
self, train_dataloader, dev_dataloader, test_dataloader,
optimizer, scheduler, output_dir,
log_step, valid_steps, epochs,
gradient_accumulation_steps,
):
if self.is_master and not self.is_wandb:
log_train = open(os.path.join(output_dir, 'train_log.txt'), 'w', buffering=1)
log_eval = open(os.path.join(output_dir, 'eval_log.txt'), 'w', buffering=1)
print('step,loss,accuracy', file=log_train)
print('step,accuracy', file=log_eval)
log_train.close()
log_eval.close()
# okay, have to honest, not sure whether we do train mode align or eval align;
# i guess it is good to try both, but ... only trying train here and move on.
self.model.train()
train_iterator = trange(
0, int(epochs), desc="Epoch"
)
total_step = 0
total_log_step = 0
best_eval_acc = -1
target_total_step = len(train_dataloader) * int(epochs)
temperature_start = 50.0
temperature_end = 0.1
temperature_schedule = torch.linspace(temperature_start, temperature_end, target_total_step).to(torch.bfloat16)
self.model.model.temperature.data = temperature_schedule[total_step]
for epoch in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc=f"Epoch: {epoch}", position=0, leave=True)
for step, inputs in enumerate(epoch_iterator):
for k, v in inputs.items():
if v is not None and isinstance(v, torch.Tensor):
inputs[k] = v.to(self.device)
# aligning forward!
source_hidden_states = self.model(
input_ids=inputs['source_input_ids'],
output_rotated_hidden_states_only=True
).rotated_hidden_states
outputs = self.model(
input_ids=inputs['input_ids'],
source_hidden_states=source_hidden_states,
intervention_ids=inputs['intervention_ids'],
labels=inputs['labels']
)
loss = outputs.loss.mean() if self.n_gpu > 1 else outputs.loss
actual_test_labels = inputs['labels'][:, -1]
pred_test_labels = torch.argmax(outputs.logits[:, -1], dim=-1)
correct_labels = (actual_test_labels==pred_test_labels)
step_accuracy = correct_labels.sum() / correct_labels.shape[0]
step_accuracy = step_accuracy.tolist()
if self.is_master and total_step % log_step == 0:
if self.is_wandb:
intervention_boundaries = torch.clamp(self.model.model.intervention_boundaries, 1e-3, 1)
wandb.log(
{
"train/loss": loss.item(),
"train/step_accuracy": step_accuracy,
"train/temperature": self.model.model.temperature.data,
"train/unified_boundary": intervention_boundaries.data[0],
"train/unified_boundary (dummy)": intervention_boundaries.data[1],
},
step=total_step
)
else:
log_train = open(os.path.join(output_dir, 'train_log.txt'), 'a', buffering=1)
print('{},{},{}'.format(
total_step, loss.item(), step_accuracy
),
file=log_train
)
log_train.close()
if total_step != 0 and total_step % valid_steps == 0:
total_count = 0
correct_count = 0
self.model.eval()
with torch.no_grad():
for step, inputs in enumerate(dev_dataloader):
for k, v in inputs.items():
if v is not None and isinstance(v, torch.Tensor):
inputs[k] = v.to(self.device)
# aligning forward!
source_hidden_states = self.model(
input_ids=inputs['source_input_ids'],
output_rotated_hidden_states_only=True
).rotated_hidden_states
outputs = self.model(
input_ids=inputs['input_ids'],
source_hidden_states=source_hidden_states,
intervention_ids=inputs['intervention_ids'],
labels=inputs['labels']
)
actual_test_labels = inputs['labels'][:, -1]
pred_test_labels = torch.argmax(outputs.logits[:, -1], dim=-1)
correct_labels = (actual_test_labels==pred_test_labels)
total_count += len(correct_labels)
correct_count += correct_labels.sum().tolist()
current_acc = round(correct_count/total_count, 2)
if self.is_wandb:
wandb.log(
{
"eval/accuracy": current_acc
},
step=total_step
)
else:
log_eval = open(os.path.join(output_dir, 'eval_log.txt'), 'a', buffering=1)
print('{},{}'.format(total_step, current_acc), file=log_eval)
log_eval.close()
if current_acc > best_eval_acc:
best_eval_acc = current_acc
if self.is_master:
self.save_model(output_dir, 'pytorch-rotate-best.bin')
self.model.train()
total_log_step += 1
loss_str = round(loss.item(), 2)
epoch_iterator.set_postfix({'loss': loss_str})
if gradient_accumulation_steps > 1:
loss = loss / gradient_accumulation_steps
if total_step % gradient_accumulation_steps == 0:
if not (gradient_accumulation_steps > 1 and total_step == 0):
loss.backward()
optimizer.step()
scheduler.step()
self.model.zero_grad()
self.model.model.temperature.data = temperature_schedule[total_step]
total_step += 1
logger.info("Training is finished ...")
###############################
# End of training evaluation.
if self.is_master:
total_count = 0
correct_count = 0
self.model.eval()
with torch.no_grad():
for step, inputs in enumerate(test_dataloader):
for k, v in inputs.items():
if v is not None and isinstance(v, torch.Tensor):
inputs[k] = v.to(self.device)
# aligning forward!
source_hidden_states = self.model(
input_ids=inputs['source_input_ids'],
output_rotated_hidden_states_only=True
).rotated_hidden_states
outputs = self.model(
input_ids=inputs['input_ids'],
source_hidden_states=source_hidden_states,
intervention_ids=inputs['intervention_ids'],
labels=inputs['labels']
)
actual_test_labels = inputs['labels'][:, -1]
pred_test_labels = torch.argmax(outputs.logits[:, -1], dim=-1)
correct_labels = (actual_test_labels==pred_test_labels)
total_count += len(correct_labels)
correct_count += correct_labels.sum().tolist()
current_acc = round(correct_count/total_count, 2)
if self.is_wandb:
wandb.log(
{
"test/accuracy": current_acc
},
step=total_step
)
wandb.finish()
else:
log_eval = open(os.path.join(output_dir, 'eval_log.txt'), 'a', buffering=1)
print('{},{}'.format(total_step, current_acc), file=log_eval)
log_eval.close()
###############################
if self.is_master:
self.save_model(output_dir, 'pytorch-rotate-last.bin')