-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path4B_cnntest.py
58 lines (46 loc) · 2.05 KB
/
4B_cnntest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# Importing the Keras libraries and packages
from keras.models import Sequential
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import Flatten
from keras.layers import Dense
# Initialising the CNN
classifier = Sequential()
# Step 1 - Convolution
classifier.add(Conv2D(32, (3, 3), input_shape=(64, 64, 3), activation='relu'))
# Step 2 - Pooling
classifier.add(MaxPooling2D(pool_size=(2, 2)))
# Adding a second convolutional layer
classifier.add(Conv2D(32, (3, 3), activation='relu'))
classifier.add(MaxPooling2D(pool_size=(2, 2)))
# Step 3 - Flattening
classifier.add(Flatten())
# Step 4 - Full connection
classifier.add(Dense(units=128, activation='relu'))
classifier.add(Dense(units=1, activation='sigmoid'))
# Compiling the CNN
classifier.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
# Part 2 - Fitting the CNN to the images
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale=1. / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1. / 255)
training_set = train_datagen.flow_from_directory('dataset\\training_set', target_size=(64, 64), batch_size=32,
class_mode='binary')
test_set = test_datagen.flow_from_directory('dataset\\test_set', target_size=(64, 64), batch_size=32,
class_mode='binary')
classifier.fit(training_set)
print(classifier.summary())
# Part 3 - Making new predictions
import numpy as np
from keras.preprocessing import image
for i in range(1, 12):
test_image = image.load_img('dataset/single_prediction/sp' + str(i) + '.jpg', target_size=(64, 64))
test_image = image.img_to_array(test_image)
test_image = np.expand_dims(test_image, axis=0)
result = classifier.predict(test_image)
print(result[0][0])
if result[0][0] == 1:
prediction = 'washing'
else:
prediction = 'steady'
print(prediction)