Skip to content
forked from FabulousFabs/AdEx

Spiking neural network implementation with AdEx excitatory, SST & PV (inter-)neurons and GABA_a, GABA_b, AMPA & NMDA synapses.

Notifications You must be signed in to change notification settings

aquaresima/AdEx

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

49 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Spiking neural network implementation[1] with AdEx neurons[2]

To-do:

  • Test this by replicating the results of Pan et al.[4]

Current state

  • Pedantic Heun's method[5] implemented (no longer utilises DifferentialEquations.jl)
  • AdEx_Neuron_T1[2] implemented
  • AdEx_Neuron_T2[1] implemented
  • AdEx_Neuron_Excitatory[3] implemented
  • AdEx_Interneuron_SST[3] implemented
  • AdEx_Interneuron_PV[3] implemented
  • All (inter-)neurons can have multiple types of synapses
  • GABA_a, GABA_b, AMPA & NMDA synapses[1] implemented
  • Now properly modelling interactions of Exc -> SST and PV -> Exc, as described by Park & Geffen[3] and Tremblay et al.[6]
  • Comprehensive plots added
    • For example, for model:
       network_draft = [
           AdEx_Model_Neurons(
               T=AdEx_Neuron_T1,
               N=2,
               S=[AdEx_Model_Synapses(
                   T=AdEx_Synapse_AMPA,
                   C=Int[4, 5]
               )]
           ),
           AdEx_Model_Neurons(
               T=AdEx_Neuron_T1,
               N=1,
               S=[AdEx_Model_Synapses(
                   T=AdEx_Synapse_GABA_A,
                   C=Int[1, 2]
               ), AdEx_Model_Synapses(
                   T=AdEx_Synapse_AMPA,
                   C=Int[6]
               )]
           ),
           AdEx_Model_Neurons(
               T=AdEx_Neuron_T1,
               N=2,
               S=[AdEx_Model_Synapses(
                   T=AdEx_Synapse_NMDA,
                   C=Int[1, 2]
               ), AdEx_Model_Synapses(
                   T=AdEx_Synapse_AMPA,
                   C=Int[3, 3, 3]
               )]
           ),
           AdEx_Model_Neurons(
               T=AdEx_Neuron_T1,
               N=1,
               S=[AdEx_Model_Synapses(
                   T=AdEx_Synapse_GABA_A,
                   C=Int[1, 2]
               )]
           )
       ];
       
       ...
       
       T = (0ms, 2000ms);
       I = [
           (1, AdEx_boxcar(T[1]:T[2], 100ms, 1400ms, 2mV)),
           (2, AdEx_sin(T[1]:T[2], 2mV, 0.001))
       ];
    • We get:
      • Spike train plots
      • Neuron history plots
      • Synapse history plots, left column I(t), right column g(t), rows = one synapse

References

  • [1] Gerstner, W., Kistler, W.M., Naud, R., & Paninski, L. (2014). Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition. New York: CUP.

  • [2] Brette, R., & Gerstner, W. (2005). Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. Journal of Neurophysiology, 94, 3637-3642. DOI: http://dx.doi.org/10.1152/jn.00686.2005.

  • [3] Park, Y., & Geffen, M.N. (preprint). A unifying mechanistic model of excitatory-inhibitory interactions in the auditory cortex. bioRxiv, 626358. DOI: http://dx.doi.org/10.1101/626358

  • [4] Pan, Z., Chua, Y., Wu, J., Zhang, M., Li, H., & Ambikairajah, E. (2020). Motivated auditory neural encoding and decoding algorithm for spiking neural networks. Frontiers in Neuroscience: Neuromorphic Engineering, 13, 1420. DOI: http://dx.doi.org/10.3389/fnins.2019.01420

  • [5] Numerical Methods--Heun's method. (n.d.). CalculusLab, San Joaquin Delta College. Retrieved May 5, 2020, from http://calculuslab.deltacollege.edu/ODE/7-C-2/7-C-2-h.html

  • [6] Tremblay, R., Lee, S., & Rudy, B. (2016). GABAergic interneurons in the neocortex: From cellular properties to circuits. Neuron, 91, 260-292. DOI: http://dx.doi.org/10.1016/j.neuron.2016.06.033

About

Spiking neural network implementation with AdEx excitatory, SST & PV (inter-)neurons and GABA_a, GABA_b, AMPA & NMDA synapses.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Julia 100.0%