forked from RubensZimbres/Repo-2017
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Time Series Neural Networks
128 lines (106 loc) · 3.82 KB
/
Time Series Neural Networks
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import pandas as pd
import matplotlib.pyplot as plt
import numpy
import numpy as np
import pandas
import math
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
from keras.layers.recurrent import LSTM
from keras.layers import LSTM
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
from keras import backend as K
import keras.callbacks
from keras.optimizers import SGD
from keras.callbacks import LearningRateScheduler
from keras.regularizers import l2, activity_l2
from scipy.interpolate import spline
epochs = 50
learning_rate = 0.01
decay_rate = 5e-6
momentum = 0.9
reg=0.0001
look_back = 23
dataframe = pd.read_csv('international-airline-passengers.csv', usecols=[1], engine='python', skipfooter=3)
dataset = dataframe.values
dataset = dataset.astype('float32')
numpy.random.seed(7)
scaler = MinMaxScaler(feature_range=(0, 1))
dataset = scaler.fit_transform(dataset)
train_size = int(len(dataset) * 0.8)
test_size = len(dataset) - train_size
train, test = dataset[0:train_size,:], dataset[train_size:len(dataset),:]
print(len(train), len(test))
def my_init(shape, name=None):
value = np.random.random(shape)
return K.variable(value, name=name)
def step_decay(losses):
if float(2*np.sqrt(np.array(history.losses[-1])))<0.15:
lrate=0.01*1/(1+0.1*len(history.losses))
momentum=0.2
decay_rate=0.0
return lrate
else:
lrate=0.01
return lrate
sd=[]
class LossHistory(keras.callbacks.Callback):
def on_train_begin(self, logs={}):
self.losses = [1,1]
def on_epoch_end(self, batch, logs={}):
self.losses.append(logs.get('loss'))
sd.append(step_decay(len(self.losses)))
print('learning rate:', step_decay(len(self.losses)))
print('derivative of loss:', 2*np.sqrt((self.losses[-1])))
def create_dataset(dataset, look_back=1):
dataX, dataY = [], []
for i in range(len(dataset)-look_back):
a = dataset[i:(i+look_back), 0]
dataX.append(a)
dataY.append(dataset[i + look_back, 0])
return numpy.array(dataX), numpy.array(dataY)
trainX, trainY = create_dataset(train, look_back)
testX, testY = create_dataset(test, look_back)
trainX
trainY = trainY.reshape(len(trainY), 1)
testY = testY.reshape(len(testY), 1)
trainY
model = Sequential()
model.add(Dense(4,input_dim=look_back,init=my_init))
model.add(Dense(1, W_regularizer=l2(reg), activity_regularizer=activity_l2(reg)))
sgd = SGD(lr=learning_rate,momentum=momentum, decay=decay_rate, nesterov=False,)
model.compile(loss='mean_squared_error', optimizer=sgd)
history=LossHistory()
lrate=LearningRateScheduler(step_decay)
model.fit(trainX, trainY, nb_epoch=epochs, batch_size=1, verbose=2,callbacks=[history,lrate])
trainPredict = model.predict(trainX)
testPredict = model.predict(testX)
trainPredict-trainY
sd[0]
c3=range(0,len(sd))
sd
plt.figure(figsize=(9,6))
line1,=plt.plot(trainPredict,linewidth=2,color='r',label='PREDICTION')
line2,=plt.plot(trainY,linewidth=2,color='b',label='TIME SERIES')
line3,=plt.plot(sd,'--',color='g',linewidth=3,label='LOSS')
plt.title("TIME SERIES PREDICTION")
plt.legend([line1, line2,line3])
plt.show()
print('Accuracy Train:',1-np.mean(abs(trainPredict-trainY)))
print('Accuracy Test:',1-np.mean(abs(testPredict-testY)))
bb=testPredict-testY
T=np.array(list(range(0,len(testX))))
xnew = np.linspace(T.min(),T.max(),300)
smooth = spline(T,testPredict,xnew)
plt.figure(figsize=(9,6))
line11,=plt.plot(testPredict,label='PREDICTION',color='r',linewidth=2)
line12,=plt.plot(testY,label='REAL')
plt.title("STOCK PREDICTION - RECURRRENT NEURAL NETWORKS")
plt.legend([line11, line12])
plt.show()
print('ACCURACY PREDICTION OF VALUE:',1-np.mean(abs(bb)))
print('ACCURACY STOCK PREDICTION (BUY|SELL):',float(sum(x>0 for x in bb)/len(bb)),'(worse than random guess)')
print('')
print('DIFFERENCE SIGNAL REAL - PREDICTED')
bb