forked from GOATmessi8/RFBNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
coco.py
315 lines (265 loc) · 11.6 KB
/
coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
"""VOC Dataset Classes
Original author: Francisco Massa
https://github.com/fmassa/vision/blob/voc_dataset/torchvision/datasets/voc.py
Updated by: Ellis Brown, Max deGroot
"""
import os
import pickle
import os.path
import sys
import torch
import torch.utils.data as data
import torchvision.transforms as transforms
import cv2
import numpy as np
import json
import uuid
from utils.pycocotools.coco import COCO
from utils.pycocotools.cocoeval import COCOeval
from utils.pycocotools import mask as COCOmask
class COCODetection(data.Dataset):
"""VOC Detection Dataset Object
input is image, target is annotation
Arguments:
root (string): filepath to VOCdevkit folder.
image_set (string): imageset to use (eg. 'train', 'val', 'test')
transform (callable, optional): transformation to perform on the
input image
target_transform (callable, optional): transformation to perform on the
target `annotation`
(eg: take in caption string, return tensor of word indices)
dataset_name (string, optional): which dataset to load
(default: 'VOC2007')
"""
def __init__(self, root, image_sets, preproc=None, target_transform=None,
dataset_name='COCO'):
self.root = root
self.cache_path = os.path.join(self.root, 'cache')
self.image_set = image_sets
self.preproc = preproc
self.target_transform = target_transform
self.name = dataset_name
self.ids = list()
self.annotations = list()
self._view_map = {
'minival2014' : 'val2014', # 5k val2014 subset
'valminusminival2014' : 'val2014', # val2014 \setminus minival2014
'test-dev2015' : 'test2015',
}
for (year, image_set) in image_sets:
coco_name = image_set+year
data_name = (self._view_map[coco_name]
if coco_name in self._view_map
else coco_name)
annofile = self._get_ann_file(coco_name)
_COCO = COCO(annofile)
self._COCO = _COCO
self.coco_name = coco_name
cats = _COCO.loadCats(_COCO.getCatIds())
self._classes = tuple(['__background__'] + [c['name'] for c in cats])
self.num_classes = len(self._classes)
self._class_to_ind = dict(zip(self._classes, range(self.num_classes)))
self._class_to_coco_cat_id = dict(zip([c['name'] for c in cats],
_COCO.getCatIds()))
indexes = _COCO.getImgIds()
self.image_indexes = indexes
self.ids.extend([self.image_path_from_index(data_name, index) for index in indexes ])
if image_set.find('test') != -1:
print('test set will not load annotations!')
else:
self.annotations.extend(self._load_coco_annotations(coco_name, indexes,_COCO))
def image_path_from_index(self, name, index):
"""
Construct an image path from the image's "index" identifier.
"""
# Example image path for index=119993:
# images/train2014/COCO_train2014_000000119993.jpg
file_name = ('COCO_' + name + '_' +
str(index).zfill(12) + '.jpg')
image_path = os.path.join(self.root, 'images',
name, file_name)
assert os.path.exists(image_path), \
'Path does not exist: {}'.format(image_path)
return image_path
def _get_ann_file(self, name):
prefix = 'instances' if name.find('test') == -1 \
else 'image_info'
return os.path.join(self.root, 'annotations',
prefix + '_' + name + '.json')
def _load_coco_annotations(self, coco_name, indexes, _COCO):
cache_file=os.path.join(self.cache_path,coco_name+'_gt_roidb.pkl')
if os.path.exists(cache_file):
with open(cache_file, 'rb') as fid:
roidb = pickle.load(fid)
print('{} gt roidb loaded from {}'.format(coco_name,cache_file))
return roidb
gt_roidb = [self._annotation_from_index(index, _COCO)
for index in indexes]
with open(cache_file, 'wb') as fid:
pickle.dump(gt_roidb,fid,pickle.HIGHEST_PROTOCOL)
print('wrote gt roidb to {}'.format(cache_file))
return gt_roidb
def _annotation_from_index(self, index, _COCO):
"""
Loads COCO bounding-box instance annotations. Crowd instances are
handled by marking their overlaps (with all categories) to -1. This
overlap value means that crowd "instances" are excluded from training.
"""
im_ann = _COCO.loadImgs(index)[0]
width = im_ann['width']
height = im_ann['height']
annIds = _COCO.getAnnIds(imgIds=index, iscrowd=None)
objs = _COCO.loadAnns(annIds)
# Sanitize bboxes -- some are invalid
valid_objs = []
for obj in objs:
x1 = np.max((0, obj['bbox'][0]))
y1 = np.max((0, obj['bbox'][1]))
x2 = np.min((width - 1, x1 + np.max((0, obj['bbox'][2] - 1))))
y2 = np.min((height - 1, y1 + np.max((0, obj['bbox'][3] - 1))))
if obj['area'] > 0 and x2 >= x1 and y2 >= y1:
obj['clean_bbox'] = [x1, y1, x2, y2]
valid_objs.append(obj)
objs = valid_objs
num_objs = len(objs)
res = np.zeros((num_objs, 5))
# Lookup table to map from COCO category ids to our internal class
# indices
coco_cat_id_to_class_ind = dict([(self._class_to_coco_cat_id[cls],
self._class_to_ind[cls])
for cls in self._classes[1:]])
for ix, obj in enumerate(objs):
cls = coco_cat_id_to_class_ind[obj['category_id']]
res[ix, 0:4] = obj['clean_bbox']
res[ix, 4] = cls
return res
def __getitem__(self, index):
img_id = self.ids[index]
target = self.annotations[index]
img = cv2.imread(img_id, cv2.IMREAD_COLOR)
height, width, _ = img.shape
if self.target_transform is not None:
target = self.target_transform(target)
if self.preproc is not None:
img, target = self.preproc(img, target)
# target = self.target_transform(target, width, height)
#print(target.shape)
return img, target
def __len__(self):
return len(self.ids)
def pull_image(self, index):
'''Returns the original image object at index in PIL form
Note: not using self.__getitem__(), as any transformations passed in
could mess up this functionality.
Argument:
index (int): index of img to show
Return:
PIL img
'''
img_id = self.ids[index]
return cv2.imread(img_id, cv2.IMREAD_COLOR)
def pull_tensor(self, index):
'''Returns the original image at an index in tensor form
Note: not using self.__getitem__(), as any transformations passed in
could mess up this functionality.
Argument:
index (int): index of img to show
Return:
tensorized version of img, squeezed
'''
to_tensor = transforms.ToTensor()
return torch.Tensor(self.pull_image(index)).unsqueeze_(0)
def _print_detection_eval_metrics(self, coco_eval):
IoU_lo_thresh = 0.5
IoU_hi_thresh = 0.95
def _get_thr_ind(coco_eval, thr):
ind = np.where((coco_eval.params.iouThrs > thr - 1e-5) &
(coco_eval.params.iouThrs < thr + 1e-5))[0][0]
iou_thr = coco_eval.params.iouThrs[ind]
assert np.isclose(iou_thr, thr)
return ind
ind_lo = _get_thr_ind(coco_eval, IoU_lo_thresh)
ind_hi = _get_thr_ind(coco_eval, IoU_hi_thresh)
# precision has dims (iou, recall, cls, area range, max dets)
# area range index 0: all area ranges
# max dets index 2: 100 per image
precision = \
coco_eval.eval['precision'][ind_lo:(ind_hi + 1), :, :, 0, 2]
ap_default = np.mean(precision[precision > -1])
print('~~~~ Mean and per-category AP @ IoU=[{:.2f},{:.2f}] '
'~~~~'.format(IoU_lo_thresh, IoU_hi_thresh))
print('{:.1f}'.format(100 * ap_default))
for cls_ind, cls in enumerate(self._classes):
if cls == '__background__':
continue
# minus 1 because of __background__
precision = coco_eval.eval['precision'][ind_lo:(ind_hi + 1), :, cls_ind - 1, 0, 2]
ap = np.mean(precision[precision > -1])
print('{:.1f}'.format(100 * ap))
print('~~~~ Summary metrics ~~~~')
coco_eval.summarize()
def _do_detection_eval(self, res_file, output_dir):
ann_type = 'bbox'
coco_dt = self._COCO.loadRes(res_file)
coco_eval = COCOeval(self._COCO, coco_dt)
coco_eval.params.useSegm = (ann_type == 'segm')
coco_eval.evaluate()
coco_eval.accumulate()
self._print_detection_eval_metrics(coco_eval)
eval_file = os.path.join(output_dir, 'detection_results.pkl')
with open(eval_file, 'wb') as fid:
pickle.dump(coco_eval, fid, pickle.HIGHEST_PROTOCOL)
print('Wrote COCO eval results to: {}'.format(eval_file))
def _coco_results_one_category(self, boxes, cat_id):
results = []
for im_ind, index in enumerate(self.image_indexes):
dets = boxes[im_ind].astype(np.float)
if dets == []:
continue
scores = dets[:, -1]
xs = dets[:, 0]
ys = dets[:, 1]
ws = dets[:, 2] - xs + 1
hs = dets[:, 3] - ys + 1
results.extend(
[{'image_id' : index,
'category_id' : cat_id,
'bbox' : [xs[k], ys[k], ws[k], hs[k]],
'score' : scores[k]} for k in range(dets.shape[0])])
return results
def _write_coco_results_file(self, all_boxes, res_file):
# [{"image_id": 42,
# "category_id": 18,
# "bbox": [258.15,41.29,348.26,243.78],
# "score": 0.236}, ...]
results = []
for cls_ind, cls in enumerate(self._classes):
if cls == '__background__':
continue
print('Collecting {} results ({:d}/{:d})'.format(cls, cls_ind,
self.num_classes ))
coco_cat_id = self._class_to_coco_cat_id[cls]
results.extend(self._coco_results_one_category(all_boxes[cls_ind],
coco_cat_id))
'''
if cls_ind ==30:
res_f = res_file+ '_1.json'
print('Writing results json to {}'.format(res_f))
with open(res_f, 'w') as fid:
json.dump(results, fid)
results = []
'''
#res_f2 = res_file+'_2.json'
print('Writing results json to {}'.format(res_file))
with open(res_file, 'w') as fid:
json.dump(results, fid)
def evaluate_detections(self, all_boxes, output_dir):
res_file = os.path.join(output_dir, ('detections_' +
self.coco_name +
'_results'))
res_file += '.json'
self._write_coco_results_file(all_boxes, res_file)
# Only do evaluation on non-test sets
if self.coco_name.find('test') == -1:
self._do_detection_eval(res_file, output_dir)
# Optionally cleanup results json file