forked from sigal-raab/MoDi
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathInverseKinematics.py
560 lines (416 loc) · 21.8 KB
/
InverseKinematics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
##############################
#
# based on http://theorangeduck.com/page/deep-learning-framework-character-motion-synthesis-and-editing
#
##############################
import numpy as np
import scipy.linalg as linalg
try:
from . import Animation
from . import AnimationStructure
from .Quaternions import Quaternions
except:
import Animation
import AnimationStructure
from Quaternions import Quaternions
class BasicInverseKinematics:
"""
Basic Inverse Kinematics Solver
This is an extremely simple full body IK
solver.
It works given the following conditions:
* All joint targets must be specified
* All joint targets must be in reach
* All joint targets must not differ
extremely from the starting pose
* No bone length constraints can be violated
* The root translation and rotation are
set to good initial values
It works under the observation that if the
_directions_ the joints are pointing toward
match the _directions_ of the vectors between
the target joints then the pose should match
that of the target pose.
Therefore it iterates over joints rotating
each joint such that the vectors between it
and it's children match that of the target
positions.
Parameters
----------
animation : Animation
animation input
positions : (F, J, 3) ndarray
target positions for each frame F
and each joint J
iterations : int
Optional number of iterations.
If the above conditions are met
1 iteration should be enough,
therefore the default is 1
silent : bool
Optional if to suppress output
defaults to False
"""
def __init__(self, animation, positions, iterations=1, silent=True):
self.animation = animation
self.positions = positions
self.iterations = iterations
self.silent = silent
def __call__(self):
children = AnimationStructure.children_list(self.animation.parents)
for i in range(self.iterations):
for j in AnimationStructure.joints(self.animation.parents):
c = np.array(children[j])
if len(c) == 0: continue
anim_transforms = Animation.transforms_global(self.animation)
anim_positions = anim_transforms[:,:,:3,3] # look at the translation vector inside a rotation matrix
anim_rotations = Quaternions.from_transforms(anim_transforms)
# self.animation.rotations[1,0]*(self.animation.offsets[1] + self.animation.rotations[1,1]*self.animation.offsets[2]) ==
# anim_positions[1, 2]
jdirs = anim_positions[:,c] - anim_positions[:,np.newaxis,j] # limb vectors given by animation
ddirs = self.positions[:,c] - self.positions[:,np.newaxis,j] # limb vectors given by input positions (target)
if len(c) > 1 and (jdirs==0).all() and (ddirs==0).all(): # there was an expansion of high degree vertices (expand_topology())
# self.animation.rotations[:, j] remains untouched
continue
jsums = np.sqrt(np.sum(jdirs**2.0, axis=-1)) + 1e-20
dsums = np.sqrt(np.sum(ddirs**2.0, axis=-1)) + 1e-20
jdirs = jdirs / jsums[:,:,np.newaxis]
ddirs = ddirs / dsums[:,:,np.newaxis]
angles = np.arccos(np.sum(jdirs * ddirs, axis=2).clip(-1, 1))
axises = np.cross(jdirs, ddirs)
# if jdirs.shape[1] == 1: # for a single child reconstruction should be exact
# assert np.allclose(Quaternions.from_angle_axis(angles, np.cross(jdirs, ddirs)) * jdirs, ddirs)
axises = -anim_rotations[:,j,np.newaxis] * axises
# find out which of the given bones are not of zero length
# zero length bones produces a meaningless rotation
jdirs_positive = (jsums > 1e-4)
ddirs_positive = (dsums > 1e-4)
dirs_positive = jdirs_positive[0]
rotations = Quaternions.from_angle_axis(angles, axises)
if rotations.shape[1] == 1:
averages = rotations[:,0]
else:
averages = Quaternions.exp(rotations[:,dirs_positive].log().mean(axis=-2))
self.animation.rotations[:,j] = self.animation.rotations[:,j] * averages
if not self.silent:
anim_positions = Animation.positions_global(self.animation)
error = np.mean(np.sum((anim_positions - self.positions)**2.0, axis=-1)**0.5) # axis=-1)
print('[BasicInverseKinematics] Iteration %i Error: %f' % (i+1, error))
return self.animation
class JacobianInverseKinematics:
"""
Jacobian Based Full Body IK Solver
This is a full body IK solver which
uses the dampened least squares inverse
jacobian method.
It should remain fairly stable and effective
even for joint positions which are out of
reach and it can also take any number of targets
to treat as end effectors.
Parameters
----------
animation : Animation
animation to solve inverse problem on
targets : {int : (F, 3) ndarray}
Dictionary of target positions for each
frame F, mapping joint index to
a target position
references : (F, 3)
Optional list of J joint position
references for which the result
should bias toward
iterations : int
Optional number of iterations to
compute. More iterations results in
better accuracy but takes longer to
compute. Default is 10.
recalculate : bool
Optional if to recalcuate jacobian
each iteration. Gives better accuracy
but slower to compute. Defaults to True
damping : float
Optional damping constant. Higher
damping increases stability but
requires more iterations to converge.
Defaults to 5.0
secondary : float
Force, or bias toward secondary target.
Defaults to 0.25
silent : bool
Optional if to suppress output
defaults to False
"""
def __init__(self, animation, targets,
references=None, iterations=10,
recalculate=True, damping=2.0,
secondary=0.25, translate=False,
silent=False, weights=None,
weights_translate=None):
self.animation = animation
self.targets = targets
self.references = references
self.iterations = iterations
self.recalculate = recalculate
self.damping = damping
self.secondary = secondary
self.translate = translate
self.silent = silent
self.weights = weights
self.weights_translate = weights_translate
def cross(self, a, b):
o = np.empty(b.shape)
o[...,0] = a[...,1]*b[...,2] - a[...,2]*b[...,1]
o[...,1] = a[...,2]*b[...,0] - a[...,0]*b[...,2]
o[...,2] = a[...,0]*b[...,1] - a[...,1]*b[...,0]
return o
def jacobian(self, x, fp, fr, ts, dsc, tdsc):
""" Find parent rotations """
prs = fr[:,self.animation.parents]
prs[:,0] = Quaternions.id((1))
""" Find global positions of target joints """
tps = fp[:,np.array(list(ts.keys()))]
""" Get partial rotations """
qys = Quaternions.from_angle_axis(x[:,1:prs.shape[1]*3:3], np.array([[[0,1,0]]]))
qzs = Quaternions.from_angle_axis(x[:,2:prs.shape[1]*3:3], np.array([[[0,0,1]]]))
""" Find axis of rotations """
es = np.empty((len(x),fr.shape[1]*3, 3))
es[:,0::3] = ((prs * qzs) * qys) * np.array([[[1,0,0]]])
es[:,1::3] = ((prs * qzs) * np.array([[[0,1,0]]]))
es[:,2::3] = ((prs * np.array([[[0,0,1]]])))
""" Construct Jacobian """
j = fp.repeat(3, axis=1)
j = dsc[np.newaxis,:,:,np.newaxis] * (tps[:,np.newaxis,:] - j[:,:,np.newaxis])
j = self.cross(es[:,:,np.newaxis,:], j)
j = np.swapaxes(j.reshape((len(x), fr.shape[1]*3, len(ts)*3)), 1, 2)
if self.translate:
es = np.empty((len(x),fr.shape[1]*3, 3))
es[:,0::3] = prs * np.array([[[1,0,0]]])
es[:,1::3] = prs * np.array([[[0,1,0]]])
es[:,2::3] = prs * np.array([[[0,0,1]]])
jt = tdsc[np.newaxis,:,:,np.newaxis] * es[:,:,np.newaxis,:].repeat(tps.shape[1], axis=2)
jt = np.swapaxes(jt.reshape((len(x), fr.shape[1]*3, len(ts)*3)), 1, 2)
j = np.concatenate([j, jt], axis=-1)
return j
#@profile(immediate=True)
def __call__(self, descendants=None, gamma=1.0):
self.descendants = descendants
""" Calculate Masses """
if self.weights is None:
self.weights = np.ones(self.animation.shape[1])
if self.weights_translate is None:
self.weights_translate = np.ones(self.animation.shape[1])
""" Calculate Descendants """
if self.descendants is None:
self.descendants = AnimationStructure.descendants_mask(self.animation.parents)
self.tdescendants = np.eye(self.animation.shape[1]) + self.descendants
self.first_descendants = self.descendants[:,np.array(list(self.targets.keys()))].repeat(3, axis=0).astype(int)
self.first_tdescendants = self.tdescendants[:,np.array(list(self.targets.keys()))].repeat(3, axis=0).astype(int)
""" Calculate End Effectors """
self.endeff = np.array(list(self.targets.values()))
self.endeff = np.swapaxes(self.endeff, 0, 1)
if not self.references is None:
self.second_descendants = self.descendants.repeat(3, axis=0).astype(int)
self.second_tdescendants = self.tdescendants.repeat(3, axis=0).astype(int)
self.second_targets = dict([(i, self.references[:,i]) for i in xrange(self.references.shape[1])])
nf = len(self.animation)
nj = self.animation.shape[1]
if not self.silent:
gp = Animation.positions_global(self.animation)
gp = gp[:,np.array(list(self.targets.keys()))]
error = np.mean(np.sqrt(np.sum((self.endeff - gp)**2.0, axis=2)))
print('[JacobianInverseKinematics] Start | Error: %f' % error)
for i in range(self.iterations):
""" Get Global Rotations & Positions """
gt = Animation.transforms_global(self.animation)
gp = gt[:,:,:,3]
gp = gp[:,:,:3] / gp[:,:,3,np.newaxis]
gr = Quaternions.from_transforms(gt)
x = self.animation.rotations.euler().reshape(nf, -1)
w = self.weights.repeat(3)
if self.translate:
x = np.hstack([x, self.animation.positions.reshape(nf, -1)])
w = np.hstack([w, self.weights_translate.repeat(3)])
""" Generate Jacobian """
if self.recalculate or i == 0:
j = self.jacobian(x, gp, gr, self.targets, self.first_descendants, self.first_tdescendants)
""" Update Variables """
l = self.damping * (1.0 / (w + 0.001))
d = (l*l) * np.eye(x.shape[1])
e = gamma * (self.endeff.reshape(nf,-1) - gp[:,np.array(list(self.targets.keys()))].reshape(nf, -1))
x += np.array(list(map(lambda jf, ef:
linalg.lu_solve(linalg.lu_factor(jf.T.dot(jf) + d), jf.T.dot(ef)), j, e)))
""" Generate Secondary Jacobian """
if self.references is not None:
ns = np.array(list(map(lambda jf:
np.eye(x.shape[1]) - linalg.solve(jf.T.dot(jf) + d, jf.T.dot(jf)), j)))
if self.recalculate or i == 0:
j2 = self.jacobian(x, gp, gr, self.second_targets, self.second_descendants, self.second_tdescendants)
e2 = self.secondary * (self.references.reshape(nf, -1) - gp.reshape(nf, -1))
x += np.array(list(map(lambda nsf, j2f, e2f:
nsf.dot(linalg.lu_solve(linalg.lu_factor(j2f.T.dot(j2f) + d), j2f.T.dot(e2f))), ns, j2, e2)))
""" Set Back Rotations / Translations """
self.animation.rotations = Quaternions.from_euler(
x[:,:nj*3].reshape((nf, nj, 3)), order='xyz', world=True)
if self.translate:
self.animation.positions = x[:,nj*3:].reshape((nf,nj, 3))
""" Generate Error """
if not self.silent:
gp = Animation.positions_global(self.animation)
gp = gp[:,np.array(list(self.targets.keys()))]
error = np.mean(np.sum((self.endeff - gp)**2.0, axis=2)**0.5)
print('[JacobianInverseKinematics] Iteration %i | Error: %f' % (i+1, error))
class BasicJacobianIK:
"""
Same interface as BasicInverseKinematics
but uses the Jacobian IK Solver Instead
"""
def __init__(self, animation, positions, iterations=10, silent=True, **kw):
targets = dict([(i, positions[:,i]) for i in range(positions.shape[1])])
self.ik = JacobianInverseKinematics(animation, targets, iterations=iterations, silent=silent, **kw)
def __call__(self, **kw):
return self.ik(**kw)
class ICP:
def __init__(self,
anim, rest, weights, mesh, goal,
find_closest=True, damping=10,
iterations=10, silent=True,
translate=True, recalculate=True,
weights_translate=None):
self.animation = anim
self.rest = rest
self.vweights = weights
self.mesh = mesh
self.goal = goal
self.find_closest = find_closest
self.iterations = iterations
self.silent = silent
self.translate = translate
self.damping = damping
self.weights = None
self.weights_translate = weights_translate
self.recalculate = recalculate
def cross(self, a, b):
o = np.empty(b.shape)
o[...,0] = a[...,1]*b[...,2] - a[...,2]*b[...,1]
o[...,1] = a[...,2]*b[...,0] - a[...,0]*b[...,2]
o[...,2] = a[...,0]*b[...,1] - a[...,1]*b[...,0]
return o
def jacobian(self, x, fp, fr, goal, weights, des_r, des_t):
""" Find parent rotations """
prs = fr[:,self.animation.parents]
prs[:,0] = Quaternions.id((1))
""" Get partial rotations """
qys = Quaternions.from_angle_axis(x[:,1:prs.shape[1]*3:3], np.array([[[0,1,0]]]))
qzs = Quaternions.from_angle_axis(x[:,2:prs.shape[1]*3:3], np.array([[[0,0,1]]]))
""" Find axis of rotations """
es = np.empty((len(x),fr.shape[1]*3, 3))
es[:,0::3] = ((prs * qzs) * qys) * np.array([[[1,0,0]]])
es[:,1::3] = ((prs * qzs) * np.array([[[0,1,0]]]))
es[:,2::3] = ((prs * np.array([[[0,0,1]]])))
""" Construct Jacobian """
j = fp.repeat(3, axis=1)
j = des_r[np.newaxis,:,:,:,np.newaxis] * (goal[:,np.newaxis,:,np.newaxis] - j[:,:,np.newaxis,np.newaxis])
j = np.sum(j * weights[np.newaxis,np.newaxis,:,:,np.newaxis], 3)
j = self.cross(es[:,:,np.newaxis,:], j)
j = np.swapaxes(j.reshape((len(x), fr.shape[1]*3, goal.shape[1]*3)), 1, 2)
if self.translate:
es = np.empty((len(x),fr.shape[1]*3, 3))
es[:,0::3] = prs * np.array([[[1,0,0]]])
es[:,1::3] = prs * np.array([[[0,1,0]]])
es[:,2::3] = prs * np.array([[[0,0,1]]])
jt = des_t[np.newaxis,:,:,:,np.newaxis] * es[:,:,np.newaxis,np.newaxis,:].repeat(goal.shape[1], axis=2)
jt = np.sum(jt * weights[np.newaxis,np.newaxis,:,:,np.newaxis], 3)
jt = np.swapaxes(jt.reshape((len(x), fr.shape[1]*3, goal.shape[1]*3)), 1, 2)
j = np.concatenate([j, jt], axis=-1)
return j
#@profile(immediate=True)
def __call__(self, descendants=None, maxjoints=4, gamma=1.0, transpose=False):
""" Calculate Masses """
if self.weights is None:
self.weights = np.ones(self.animation.shape[1])
if self.weights_translate is None:
self.weights_translate = np.ones(self.animation.shape[1])
nf = len(self.animation)
nj = self.animation.shape[1]
nv = self.goal.shape[1]
weightids = np.argsort(-self.vweights, axis=1)[:,:maxjoints]
weightvls = np.array(list(map(lambda w, i: w[i], self.vweights, weightids)))
weightvls = weightvls / weightvls.sum(axis=1)[...,np.newaxis]
if descendants is None:
self.descendants = AnimationStructure.descendants_mask(self.animation.parents)
else:
self.descendants = descendants
des_r = np.eye(nj) + self.descendants
des_r = des_r[:,weightids].repeat(3, axis=0)
des_t = np.eye(nj) + self.descendants
des_t = des_t[:,weightids].repeat(3, axis=0)
if not self.silent:
curr = Animation.skin(self.animation, self.rest, self.vweights, self.mesh, maxjoints=maxjoints)
error = np.mean(np.sqrt(np.sum((curr - self.goal)**2.0, axis=-1)))
print('[ICP] Start | Error: %f' % error)
for i in range(self.iterations):
""" Get Global Rotations & Positions """
gt = Animation.transforms_global(self.animation)
gp = gt[:,:,:,3]
gp = gp[:,:,:3] / gp[:,:,3,np.newaxis]
gr = Quaternions.from_transforms(gt)
x = self.animation.rotations.euler().reshape(nf, -1)
w = self.weights.repeat(3)
if self.translate:
x = np.hstack([x, self.animation.positions.reshape(nf, -1)])
w = np.hstack([w, self.weights_translate.repeat(3)])
""" Get Current State """
curr = Animation.skin(self.animation, self.rest, self.vweights, self.mesh, maxjoints=maxjoints)
""" Find Cloest Points """
if self.find_closest:
mapping = np.argmin(
(curr[:,:,np.newaxis] -
self.goal[:,np.newaxis,:])**2.0, axis=2)
e = gamma * (np.array(list(map(lambda g, m: g[m], self.goal, mapping))) - curr).reshape(nf, -1)
else:
e = gamma * (self.goal - curr).reshape(nf, -1)
""" Generate Jacobian """
if self.recalculate or i == 0:
j = self.jacobian(x, gp, gr, self.goal, weightvls, des_r, des_t)
""" Update Variables """
l = self.damping * (1.0 / (w + 1e-10))
d = (l*l) * np.eye(x.shape[1])
if transpose:
x += np.array(list(map(lambda jf, ef: jf.T.dot(ef), j, e)))
else:
x += np.array(list(map(lambda jf, ef:
linalg.lu_solve(linalg.lu_factor(jf.T.dot(jf) + d), jf.T.dot(ef)), j, e)))
""" Set Back Rotations / Translations """
self.animation.rotations = Quaternions.from_euler(
x[:,:nj*3].reshape((nf, nj, 3)), order='xyz', world=True)
if self.translate:
self.animation.positions = x[:,nj*3:].reshape((nf, nj, 3))
if not self.silent:
curr = Animation.skin(self.animation, self.rest, self.vweights, self.mesh)
error = np.mean(np.sqrt(np.sum((curr - self.goal)**2.0, axis=-1)))
print('[ICP] Iteration %i | Error: %f' % (i+1, error))
def animation_from_positions(positions, parents, offsets=None, ik_iterations=1):
root_idx = np.where(parents == -1)[0][0]
if offsets is None:
orig_offsets = Animation.offsets_from_positions(positions, parents)
# compute offsets over all joints except for root
idx_no_root = np.delete(np.arange(positions.shape[1]), root_idx)
orig_offsets_no_root = orig_offsets[:, idx_no_root]
# prevent a zero offset (can happen in first iterations of generated motion). such offset is ill posed and
# results in ambigious angles when computing inverse kinematics
orig_offsets_no_root[orig_offsets_no_root == 0] = 1e-6 * np.random.randn()
# when synthesising motion, bone length is not always fixed among frames. We calculate mean bone length and
# use it for the offset
bone_lens = np.linalg.norm(orig_offsets_no_root, axis=2)[:, :, np.newaxis]
normed_offsets_no_root = np.divide(orig_offsets_no_root, bone_lens, out=np.zeros_like(orig_offsets_no_root), where=bone_lens!=0)
offsets_no_root = normed_offsets_no_root[0] * bone_lens.mean(axis=0)
offsets = orig_offsets[0]
offsets[idx_no_root] = offsets_no_root
anim, sorted_order, parents = Animation.animation_from_offsets(offsets, parents, shape=positions.shape)
positions = positions[:, sorted_order]
sorted_root_idx = np.where(sorted_order == root_idx)[0][0]
anim.positions[:, sorted_root_idx] = positions[:, 0] # keep root positions. important for IK
# apply IK
ik = BasicInverseKinematics(anim, positions, silent=True, iterations=ik_iterations)
ik()
return anim, sorted_order, parents