forked from python/cpython
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcProfile.py
executable file
·194 lines (164 loc) · 6.39 KB
/
cProfile.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
#! /usr/bin/env python3
"""Python interface for the 'lsprof' profiler.
Compatible with the 'profile' module.
"""
__all__ = ["run", "runctx", "Profile"]
import _lsprof
import importlib.machinery
import profile as _pyprofile
# ____________________________________________________________
# Simple interface
def run(statement, filename=None, sort=-1):
return _pyprofile._Utils(Profile).run(statement, filename, sort)
def runctx(statement, globals, locals, filename=None, sort=-1):
return _pyprofile._Utils(Profile).runctx(statement, globals, locals,
filename, sort)
run.__doc__ = _pyprofile.run.__doc__
runctx.__doc__ = _pyprofile.runctx.__doc__
# ____________________________________________________________
class Profile(_lsprof.Profiler):
"""Profile(timer=None, timeunit=None, subcalls=True, builtins=True)
Builds a profiler object using the specified timer function.
The default timer is a fast built-in one based on real time.
For custom timer functions returning integers, timeunit can
be a float specifying a scale (i.e. how long each integer unit
is, in seconds).
"""
# Most of the functionality is in the base class.
# This subclass only adds convenient and backward-compatible methods.
def print_stats(self, sort=-1):
import pstats
pstats.Stats(self).strip_dirs().sort_stats(sort).print_stats()
def dump_stats(self, file):
import marshal
with open(file, 'wb') as f:
self.create_stats()
marshal.dump(self.stats, f)
def create_stats(self):
self.disable()
self.snapshot_stats()
def snapshot_stats(self):
entries = self.getstats()
self.stats = {}
callersdicts = {}
# call information
for entry in entries:
func = label(entry.code)
nc = entry.callcount # ncalls column of pstats (before '/')
cc = nc - entry.reccallcount # ncalls column of pstats (after '/')
tt = entry.inlinetime # tottime column of pstats
ct = entry.totaltime # cumtime column of pstats
callers = {}
callersdicts[id(entry.code)] = callers
self.stats[func] = cc, nc, tt, ct, callers
# subcall information
for entry in entries:
if entry.calls:
func = label(entry.code)
for subentry in entry.calls:
try:
callers = callersdicts[id(subentry.code)]
except KeyError:
continue
nc = subentry.callcount
cc = nc - subentry.reccallcount
tt = subentry.inlinetime
ct = subentry.totaltime
if func in callers:
prev = callers[func]
nc += prev[0]
cc += prev[1]
tt += prev[2]
ct += prev[3]
callers[func] = nc, cc, tt, ct
# The following two methods can be called by clients to use
# a profiler to profile a statement, given as a string.
def run(self, cmd):
import __main__
dict = __main__.__dict__
return self.runctx(cmd, dict, dict)
def runctx(self, cmd, globals, locals):
self.enable()
try:
exec(cmd, globals, locals)
finally:
self.disable()
return self
# This method is more useful to profile a single function call.
def runcall(self, func, /, *args, **kw):
self.enable()
try:
return func(*args, **kw)
finally:
self.disable()
def __enter__(self):
self.enable()
return self
def __exit__(self, *exc_info):
self.disable()
# ____________________________________________________________
def label(code):
if isinstance(code, str):
return ('~', 0, code) # built-in functions ('~' sorts at the end)
else:
return (code.co_filename, code.co_firstlineno, code.co_name)
# ____________________________________________________________
def main():
import os
import sys
import runpy
import pstats
from optparse import OptionParser
usage = "cProfile.py [-o output_file_path] [-s sort] [-m module | scriptfile] [arg] ..."
parser = OptionParser(usage=usage)
parser.allow_interspersed_args = False
parser.add_option('-o', '--outfile', dest="outfile",
help="Save stats to <outfile>", default=None)
parser.add_option('-s', '--sort', dest="sort",
help="Sort order when printing to stdout, based on pstats.Stats class",
default=2,
choices=sorted(pstats.Stats.sort_arg_dict_default))
parser.add_option('-m', dest="module", action="store_true",
help="Profile a library module", default=False)
if not sys.argv[1:]:
parser.print_usage()
sys.exit(2)
(options, args) = parser.parse_args()
sys.argv[:] = args
# The script that we're profiling may chdir, so capture the absolute path
# to the output file at startup.
if options.outfile is not None:
options.outfile = os.path.abspath(options.outfile)
if len(args) > 0:
if options.module:
code = "run_module(modname, run_name='__main__')"
globs = {
'run_module': runpy.run_module,
'modname': args[0]
}
else:
progname = args[0]
sys.path.insert(0, os.path.dirname(progname))
with open(progname, 'rb') as fp:
code = compile(fp.read(), progname, 'exec')
spec = importlib.machinery.ModuleSpec(name='__main__', loader=None,
origin=progname)
globs = {
'__spec__': spec,
'__file__': spec.origin,
'__name__': spec.name,
'__package__': None,
'__cached__': None,
}
try:
runctx(code, globs, None, options.outfile, options.sort)
except BrokenPipeError as exc:
# Prevent "Exception ignored" during interpreter shutdown.
sys.stdout = None
sys.exit(exc.errno)
else:
parser.print_usage()
return parser
# When invoked as main program, invoke the profiler on a script
if __name__ == '__main__':
main()