Skip to content

amasawa/WAVAE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Weakly Augmented Variational Autoencoder in Time Series Anomaly Detection

image

Weakly Augmented Variational Autoencoder in Time Series Anomaly Detection

Zhangkai Wu, Longbing Cao, Qi Zhang, Junxian Zhou, Hui Chen

Paper: https://arxiv.org/abs/2401.03341

Datasets

Requirements

  • Python 3.7

  • PyTorch 1.1

Quick Start

  1. infoNCE Loss
# GD
# contrast
python main.py --train --seed 3 --model_name VQRAEcontrast --log_name NCE --loss_function mse  --lmbda 0.0001 --use_clip_norm --batch_size 64 --preprocessing --dataset GD

# HSS
# contrast
python main.py --train --seed 3 --model_name VQRAEcontrast --log_name NCE --loss_function mse --lmbda 0.0001 --use_clip_norm --batch_size 64 --preprocessing --dataset HSS


# TD
## contrast
python main.py --train --seed 3 --model_name VQRAEcontrast --log_name NCE --loss_function mse --lmbda 0.0001 --use_clip_norm --batch_size 64 --preprocessing --dataset TD
  1. AdversirialLoss
# GD
python main.py --train --seed 3 --model_name VQRAEcontrast --log_name Discriminator --loss_function mse  --lmbda 0.0001 --use_clip_norm --batch_size 64 --preprocessing --dataset GD --discriminator

# HSS
# discriminator
python main.py --train --seed 3 --model_name VQRAEcontrast --log_name Discriminator --loss_function mse  --lmbda 0.0001 --use_clip_norm --batch_size 64 --preprocessing --dataset HSS --discriminator


# ECG
# ECG contrast
python main.py --train --seed 3 --model_name VQRAEcontrast --log_name NCE --loss_function mse --lmbda 0.0001 --use_clip_norm --batch_size 64 --preprocessing --dataset ECG
# ECG discriminator

# TD
# discriminator
python main.py --train --seed 3 --model_name VQRAEcontrast --log_name Discriminator --loss_function mse  --lmbda 0.0001 --use_clip_norm --batch_size 64 --preprocessing --dataset TD --discriminator

Citations

@article{wu2024weakly,
  title={Weakly Augmented Variational Autoencoder in Time Series Anomaly Detection},
  author={Wu, Zhangkai and Cao, Longbing and Zhang, Qi and Zhou, Junxian and Chen, Hui},
  journal={arXiv preprint arXiv:2401.03341},
  year={2024}
}

Acknowlegments

Our codes are influenced by the following repos: VLDB22 and CIKM20

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages