forked from THUDM/ImageReward
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
105 lines (80 loc) · 3.41 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
'''
@File : inference.py
@Time : 2023/03/12 15:35:00
@Auther : Jiazheng Xu
@Contact : xjz22@mails.tsinghua.edu.cn
@Description: Inference reward model.
'''
import os
import torch
import json
from tqdm import tqdm
import ImageReward as RM
import argparse
def acc(score_sample, target_sample):
tol_cnt = 0.
true_cnt = 0.
for idx in range(len(score_sample)):
item_base = score_sample[idx]["ranking"]
item = target_sample[idx]["rewards"]
for i in range(len(item_base)):
for j in range(i+1, len(item_base)):
if item_base[i] > item_base[j]:
if item[i] >= item[j]:
tol_cnt += 1
elif item[i] < item[j]:
tol_cnt += 1
true_cnt += 1
elif item_base[i] < item_base[j]:
if item[i] > item[j]:
tol_cnt += 1
true_cnt += 1
elif item[i] <= item[j]:
tol_cnt += 1
return true_cnt / tol_cnt
def test(args):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
score_sample = []
with open(args.source_path, "r") as f:
score_sample = json.load(f)
model_type_list = []
if args.model_type == 'all':
model_type_list = ['ImageReward-v1.0', 'CLIP', 'BLIP', 'Aesthetic']
else:
model_type_list = [args.model_type]
for model_type in model_type_list:
print(f"{model_type} Test begin: ")
if model_type == 'ImageReward-v1.0':
model = RM.load(name=model_type, device=device, download_root=args.rm_path)
else:
model = RM.load_score(name=model_type, device=device, download_root=args.rm_path)
target_sample = []
# bar = tqdm(range(len(score_sample)), desc=f'{model_type} ranking')
with torch.no_grad():
for item in score_sample:
img_list = [os.path.join(args.img_prefix, img) for img in item["generations"]]
ranking, rewards = model.inference_rank(item["prompt"], img_list)
target_item = {
"id": item["id"],
"prompt": item["prompt"],
"ranking": ranking,
"rewards": rewards
}
target_sample.append(target_item)
# bar.update(1)
target_path = os.path.join(args.target_dir, f"test_{model_type}.json")
with open(target_path, "w") as f:
json.dump(target_sample, f, indent=4, ensure_ascii=False)
test_acc = acc(score_sample, target_sample)
print(f"{model_type:>16s} Test Acc: {100 * test_acc:.2f}%")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--source_path', default="data/test.json", type=str)
parser.add_argument('--target_dir', default="data/", type=str)
parser.add_argument('--img_prefix', default="data/test_images", type=str)
parser.add_argument('--model_type', default="all", type=str, help="ImageReward-v1.0, CLIP, BLIP, Aesthetic or all")
parser.add_argument('--rm_path', default="checkpoint/", type=str)
args = parser.parse_args()
if not os.path.exists(args.rm_path):
os.makedirs(args.rm_path)
test(args)