forked from THUDM/ImageReward
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimage_reward.py
126 lines (110 loc) · 4.3 KB
/
image_reward.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import os
import subprocess
import sys
from pathlib import Path
import gradio as gr
import modules.images as images
import modules.scripts as scripts
import torch
from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE
from modules import sd_samplers, shared
from modules.processing import (
Processed,
StableDiffusionProcessing,
create_infotext,
process_images,
)
from modules.shared import cmd_opts, opts, state
try:
import ImageReward as reward
except ModuleNotFoundError as error:
print('"image-reward" package has not been properly installed. Installing...')
if subprocess.check_call(["pip", "install", "image-reward"]) == 0:
print(f'"image-reward" package is successfully installed!')
import ImageReward as reward
else:
print('"image-reward" package installation failed!')
print(
"Please open an issue with full error message at https://github.com/THUDM/ImageReward/issues"
)
def unload_image_reward_model():
del shared.image_reward_model
class Script(scripts.Script):
def title(self):
return "ImageReward - generate human preference scores"
def show(self, is_txt2img):
return True
def ui(self, is_txt2img):
with gr.Blocks():
with gr.Row():
gr.Markdown(
value="**Tip**: It will take a little time to **load** the ImageReward model before **the first generation**."
)
with gr.Row():
with gr.Column():
filter_out_low_scores = gr.Checkbox(
value=False, label="Filter out images with low scores"
)
with gr.Column():
lower_score_limit = gr.Textbox(value=0, label="Lower score limit")
with gr.Row():
gr.Markdown(
value="ImageReward model takes about **1,600 MB** of memory."
)
with gr.Row():
unload_button = gr.Button(value="Unload Model From Memory")
unload_button.click(unload_image_reward_model)
return [filter_out_low_scores, lower_score_limit]
def run(self, p, filter_out_low_scores, lower_score_limit):
try:
shared.image_reward_model # if loaded, do nothing
except AttributeError:
# load the model
if sys.platform == "win32":
download_root = HUGGINGFACE_HUB_CACHE
else:
download_root = None
print(f"Loading ImageReward model from {download_root}...")
shared.image_reward_model = reward.load(
"ImageReward-v1.0", download_root=download_root
) # using shared to make the model object global among modules
# preprocess parameters
if lower_score_limit != "":
lower_score_limit = float(lower_score_limit)
# generate images
proc = process_images(p)
# score
gens = proc.images
with torch.no_grad():
for img in gens:
score = shared.image_reward_model.score(p.prompt, img)
img.info["score"] = score
msg = f"ImageReward Score: {score:.4f}"
if img.info.get("parameters") is None:
img.info["parameters"] = msg
else:
img.info["parameters"] += "\n " + msg
if getattr(proc, 'info', None) is None:
setattr(proc, 'info', msg)
else:
proc.info += "\n " + msg
# filter out images with scores lower than the lower limit
if filter_out_low_scores:
imgs = list(filter(lambda x: x.info["score"] > lower_score_limit, gens))
else:
imgs = gens
# append score to info
infotexts = [img.info["parameters"] for img in imgs]
# sort to score
img_info_list = list(zip(imgs, infotexts))
img_info_list.sort(key=lambda x: x[0].info["score"], reverse=True)
imgs, infotexts = list(zip(*img_info_list))
# return Processed object
return Processed(
p=p,
images_list=imgs,
info=proc.info,
seed=proc.seed,
infotexts=infotexts,
index_of_first_image=proc.index_of_first_image,
)