Faster alternative to Python's standard multiprocessing.Queue (IPC FIFO queue). Up to 30x faster in some configurations.
Implemented in C++ using POSIX mutexes with PTHREAD_PROCESS_SHARED attribute. Based on a circular buffer, low footprint, brokerless. Completely mimics the interface of the standard multiprocessing.Queue, so can be used as a drop-in replacement.
Adds get_many()
method to receive multiple messages at once on a consumer for the price of a single lock.
- Linux or MacOS
- Python 3.6 or newer
- GCC 4.9.0 or newer
pip install faster-fifo
pip install Cython
python setup.py build_ext --inplace
pip install -e .
from faster_fifo import Queue
import faster_fifo_reduction
from queue import Full, Empty
q = Queue(1000 * 1000) # specify the size of the circular buffer in the ctor
# any pickle-able Python object can be added to the queue
py_obj = dict(a=42, b=33, c=(1, 2, 3), d=[1, 2, 3], e='123', f=b'kkk')
q.put(py_obj)
assert q.qsize() == 1
retrieved = q.get()
assert q.empty()
assert py_obj == retrieved
for i in range(100):
try:
q.put(py_obj, timeout=0.1)
except Full:
log.debug('Queue is full!')
num_received = 0
while num_received < 100:
# get multiple messages at once, returns a list of messages for better performance in many-to-few scenarios
# get_many does not guarantee that all max_messages_to_get will be received on the first call, in fact
# no such guarantee can be made in multiprocessing systems.
# get_many() will retrieve as many messages as there are available AND can fit in the pre-allocated memory
# buffer. The size of the buffer is increased gradually to match demand.
messages = q.get_many(max_messages_to_get=100)
num_received += len(messages)
try:
q.get(timeout=0.1)
assert True, 'This won\'t be called'
except Empty:
log.debug('Queue is empty')
(measured execution times in seconds)
multiprocessing.Queue | faster-fifo, get() | faster-fifo, get_many() | |
---|---|---|---|
1 producer 1 consumer (200K msgs per producer) | 2.54 | 0.86 | 0.92 |
1 producer 10 consumers (200K msgs per producer) | 4.00 | 1.39 | 1.36 |
10 producers 1 consumer (100K msgs per producer) | 13.19 | 6.74 | 0.94 |
3 producers 20 consumers (100K msgs per producer) | 9.30 | 2.22 | 2.17 |
20 producers 3 consumers (50K msgs per producer) | 18.62 | 7.41 | 0.64 |
20 producers 20 consumers (50K msgs per producer) | 36.51 | 1.32 | 3.79 |
(measured execution times in seconds)
multiprocessing.Queue | faster-fifo, get() | faster-fifo, get_many() | |
---|---|---|---|
1 producer 1 consumer (200K msgs per producer) | 7.86 | 2.09 | 2.2 |
1 producer 10 consumers (200K msgs per producer) | 11.68 | 4.01 | 3.88 |
10 producers 1 consumer (100K msgs per producer) | 44.48 | 16.68 | 5.98 |
3 producers 20 consumers (100K msgs per producer) | 22.59 | 7.83 | 7.49 |
20 producers 3 consumers (50K msgs per producer) | 66.3 | 22.3 | 6.35 |
20 producers 20 consumers (50K msgs per producer) | 78.75 | 14.39 | 15.78 |
In order to use faster_fifo with 'spawn' make sure to add import faster_fifo_reduction
. This install the custom pickler, otherwise you might get an error like this:
PicklingError: Can't pickle <class '__main__.c_ubyte_Array_2'>: attribute lookup c_ubyte_Array_2
Originally designed for SampleFactory, a high-throughput asynchronous RL codebase https://github.com/alex-petrenko/sample-factory.
Programmed by Aleksei Petrenko and Tushar Kumar at USC RESL.
Developed under MIT License, feel free to use for any purpose, commercial or not, at your own risk ;)