forked from GDam90/hyp2nav
-
Notifications
You must be signed in to change notification settings - Fork 0
/
publish_goals.py
182 lines (159 loc) · 6.91 KB
/
publish_goals.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import struct
import random
import rospy
from geometry_msgs.msg import PoseStamped, Twist
from nav_msgs.msg import Path
from tf.transformations import euler_from_quaternion
import math
import argparse
import numpy as np
MIN_Y = -1.0
MAX_Y = 8.0
MAX_X = 5.0
MIN_X = -5.0
class Goal:
def __init__(self, x=0., y=0.) -> None:
self.x = x
self.y = y
def generate_random_goals(n_goals):
with open('random_goals.bin', 'wb') as f:
for _ in range(n_goals):
is_x = random.randint(0, 1)
is_negative = random.randint(0, 1)
print(is_x)
if is_x:
x = random.random() * (MAX_X - MIN_X) + MIN_X
if is_negative:
y = MIN_Y + 0.5
else:
y = MAX_Y - 0.5
else:
y = random.random() * (MAX_Y - MIN_Y) + MIN_Y
if is_negative:
x = MIN_X + 0.5
else:
x = MAX_X - 0.5
# x = random.random()*(MAX_X-MIN_X) + MIN_X
# y = random.random()*(MAX_Y-MIN_Y) + MIN_Y
data = struct.pack('d', x)
f.write(data)
data = struct.pack('d', y)
f.write(data)
print(x, y)
class GoalsPublisher:
def __init__(self, random_goals, max_goals) -> None:
rospy.init_node('goal_publisher')
self.max_goals = max_goals
self.num_goals_reached = 0
self.random_file_name = 'random_goals.bin'
self.random_goals = random_goals
self.robot_pose_sub_ = rospy.Subscriber('/Robot_1/pose', PoseStamped, self.robot_pose_callback)
self.goal_pub_ = rospy.Publisher('/roadmap/goal', PoseStamped, queue_size=10)
self.ref_path_pub_ = rospy.Publisher('/roadmap/reference', Path, queue_size=10)
self.vel_pub_ = rospy.Publisher('/Robot_1/cmd_vel', Twist, queue_size=10)
self.last_pub_stamp_ = rospy.Time.now()
self.min_dist_goal = 0.3
self.aligning_to_goal = False
if random_goals:
self.goals_file = open('random_goals.bin', 'rb')
self.current_goal = None
rospy.spin()
def read_goal(self):
data = self.goals_file.read(8)
goal = Goal()
goal.x = struct.unpack('d', data)[0]
data = self.goals_file.read(8)
goal.y = struct.unpack('d', data)[0]
print(goal.x, goal.y)
return goal
def publish_current_goal(self):
msg = PoseStamped()
msg.pose.position.x = self.current_goal.x
msg.pose.position.y = self.current_goal.y
msg.header.stamp = rospy.Time.now()
msg.header.frame_id = 'map'
self.goal_pub_.publish(msg)
def construct_reference_path(self, msg):
robot_x = msg.pose.position.x
robot_y = msg.pose.position.y
path = Path()
# Add the start
new_g = PoseStamped()
new_g.pose.position.x = robot_x
new_g.pose.position.y = robot_y
new_g.header.stamp = msg.header.stamp
new_g.header.frame_id = 'map'
path.poses.append(new_g)
theta = math.atan2(self.current_goal.y - robot_y, self.current_goal.x - robot_x)
# Add the rest
while math.sqrt((path.poses[-1].pose.position.x - self.current_goal.x)**2 + (path.poses[-1].pose.position.y - self.current_goal.y)**2) > 2.0:
new_g = PoseStamped()
new_g.pose.position.x = path.poses[-1].pose.position.x + 2. * math.cos(theta)
new_g.pose.position.y = path.poses[-1].pose.position.y + 2. * math.sin(theta)
new_g.header.stamp = msg.header.stamp
new_g.header.frame_id = 'map'
path.poses.append(new_g)
# Add the goal
new_g = PoseStamped()
new_g.pose.position.x = self.current_goal.x
new_g.pose.position.y = self.current_goal.y
new_g.header.stamp = msg.header.stamp
new_g.header.frame_id = 'map'
path.poses.append(new_g)
path.header.frame_id = 'map'
path.header.stamp = msg.header.stamp
self.reference_path = path
def publish_path(self):
# print("GoalPublisher: Publishing reference path")
# print("-----------")
# for p in self.reference_path.poses:
# print(f"Point (x = {p.pose.position.x}, y = {p.pose.position.y})")
self.ref_path_pub_.publish(self.reference_path)
def robot_pose_callback(self, msg: PoseStamped):
# TODO: Filter poses
if self.current_goal:
# @Note: Robot radius subtracted
goal_dist = -0.325 + math.sqrt((msg.pose.position.x - self.current_goal.x)**2 + (msg.pose.position.y - self.current_goal.y)**2)
# print(f"Goal distance: {goal_dist}")
if self.current_goal is None:
self.current_goal = self.read_goal()
self.publish_current_goal()
self.construct_reference_path(msg)
self.publish_path()
self.last_pub_stamp_ = msg.header.stamp
goal_dist = -0.325 + math.sqrt((msg.pose.position.x - self.current_goal.x)**2 + (msg.pose.position.y - self.current_goal.y)**2)
if goal_dist < self.min_dist_goal and not self.aligning_to_goal:
self.num_goals_reached = self.num_goals_reached + 1
print("Number of goals reched: ", self.num_goals_reached)
if self.num_goals_reached == self.max_goals:
print("Configured number of goals reached! Exiting.")
rospy.signal_shutdown("Finished successfully")
else:
self.aligning_to_goal = True
if self.aligning_to_goal:
_, _, theta = euler_from_quaternion([msg.pose.orientation.x, msg.pose.orientation.y, msg.pose.orientation.z, msg.pose.orientation.w])
angle_to_goal = math.atan2(msg.pose.position.y - self.current_goal.y, msg.pose.position.y - self.current_goal.y)%(2*math.pi) - theta%(2*math.pi)
if abs(angle_to_goal) < 0.4:
self.aligning_to_goal = False
self.current_goal = self.read_goal()
self.publish_current_goal()
self.construct_reference_path(msg)
self.publish_path()
self.last_pub_stamp_ = msg.header.stamp
else:
vel_msg = Twist()
vel_msg.angular.z = np.sign(angle_to_goal)
self.vel_pub_.publish(vel_msg)
elif self.last_pub_stamp_ + rospy.Duration(1. / 20.) <= msg.header.stamp:
self.publish_path()
self.publish_current_goal()
self.last_pub_stamp_ = msg.header.stamp
if __name__ == '__main__':
parser = argparse.ArgumentParser('Parse configuration file')
parser.add_argument('--n_goals', type=int, required=True)
parser.add_argument('--publish', default=False, action='store_true')
args = parser.parse_args()
if args.publish:
goal_publisher = GoalsPublisher(True, args.n_goals)
else:
generate_random_goals(args.n_goals)