-
Notifications
You must be signed in to change notification settings - Fork 114
/
Copy pathseq_cropdisease.py
196 lines (159 loc) · 6.5 KB
/
seq_cropdisease.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import json
import os
import torchvision.transforms as transforms
import torch.nn.functional as F
from torch.utils.data import Dataset
import numpy as np
from PIL import Image
from typing import Tuple
from datasets.utils import set_default_from_args
from utils import smart_joint
from utils.conf import base_path
from datasets.utils.continual_dataset import ContinualDataset, fix_class_names_order, store_masked_loaders
from datasets.transforms.denormalization import DeNormalize
from torchvision.transforms.functional import InterpolationMode
from utils.prompt_templates import templates
class CropDisease(Dataset):
LABELS = [
"Apple___Apple_scab",
"Apple___Black_rot",
"Apple___healthy",
"Blueberry___healthy",
"Cherry___Powdery_mildew",
"Cherry___healthy",
"Corn___Cercospora_leaf_spot Gray_leaf_spot",
"Corn___Common_rust",
"Corn___Northern_Leaf_Blight",
"Corn___healthy",
"Grape___Black_rot",
"Grape___Esca_(Black_Measles)",
"Grape___Leaf_blight_(Isariopsis_Leaf_Spot)",
"Grape___healthy",
"Orange___Haunglongbing_(Citrus_greening)",
"Peach___Bacterial_spot",
"Pepper,_bell___Bacterial_spot",
"Pepper,_bell___healthy",
"Potato___Early_blight",
"Potato___Late_blight",
"Raspberry___healthy",
"Soybean___healthy",
"Squash___Powdery_mildew",
"Strawberry___Leaf_scorch",
"Strawberry___healthy",
"Tomato___Bacterial_spot",
"Tomato___Early_blight",
"Tomato___Late_blight",
"Tomato___Leaf_Mold",
"Tomato___Septoria_leaf_spot",
"Tomato___Spider_mites Two-spotted_spider_mite",
"Tomato___Target_Spot",
"Tomato___Tomato_Yellow_Leaf_Curl_Virus",
"Tomato___Tomato_mosaic_virus",
"Tomato___healthy",
]
def __init__(self, root, train=True, transform=None,
target_transform=None, download=False) -> None:
self.root = root
self.train = train
self.transform = transform
self.target_transform = target_transform
self.not_aug_transform = transforms.Compose([
transforms.Resize((224, 224), interpolation=InterpolationMode.BICUBIC),
transforms.ToTensor()]
)
if download:
if os.path.isdir(root) and len(os.listdir(root)) > 0:
print('Download not needed, files already on disk.')
else:
from onedrivedownloader import download
ln = "https://unimore365-my.sharepoint.com/:u:/g/personal/215580_unimore_it/EZUaXKQUAVBPrhjHTUdflDEBNu0YiPWrdpAdDhnEU4nD2A?e=GPrCYF"
print('Downloading dataset')
parent_dir = os.path.dirname(root)
download(ln, filename=os.path.join(root, 'cropdisease.tar.gz'), unzip=True, unzip_path=parent_dir, clean=True)
filename = smart_joint(root, ('train' if train else 'test') + '.json')
with open(filename) as f:
data_config = json.load(f)
self.data = np.array([smart_joint(root, 'images', d) for d in data_config['data']])
self.targets = np.array(data_config['labels']).astype(np.int16)
def __len__(self):
return len(self.targets)
def __getitem__(self, index: int) -> Tuple[Image.Image, int, Image.Image]:
"""
Gets the requested element from the dataset.
:param index: index of the element to be returned
:returns: tuple: (image, target) where target is index of the target class.
"""
img, target = self.data[index], self.targets[index]
img = Image.open(img).convert('RGB')
original_img = img.copy()
not_aug_img = self.not_aug_transform(original_img)
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
if not self.train:
return img, target
if hasattr(self, 'logits'):
return img, target, not_aug_img, self.logits[index]
return img, target, not_aug_img
class SequentialCropDisease(ContinualDataset):
NAME = 'seq-cropdisease'
SETTING = 'class-il'
N_TASKS = 7
N_CLASSES = 35
N_CLASSES_PER_TASK = N_CLASSES // N_TASKS
SIZE = (224, 224)
MEAN, STD = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]
TRANSFORM = transforms.Compose([
transforms.RandomResizedCrop(SIZE, interpolation=InterpolationMode.BICUBIC),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=MEAN, std=STD),
])
TEST_TRANSFORM = transforms.Compose([
transforms.Resize(size=SIZE, interpolation=InterpolationMode.BICUBIC),
transforms.CenterCrop(SIZE),
transforms.ToTensor(),
transforms.Normalize(mean=MEAN, std=STD),
])
def get_data_loaders(self):
train_dataset = CropDisease(base_path() + 'cropdisease', train=True,
download=True, transform=self.TRANSFORM)
test_dataset = CropDisease(base_path() + 'cropdisease', train=False,
download=True, transform=self.TEST_TRANSFORM)
train, test = store_masked_loaders(train_dataset, test_dataset, self)
return train, test
def get_class_names(self):
if self.class_names is not None:
return self.class_names
classes = [x.replace('_', ' ') for x in CropDisease.LABELS] # .split('___')[-1]
classes = fix_class_names_order(classes, self.args)
self.class_names = classes
return self.class_names
@staticmethod
def get_prompt_templates():
return templates['cifar100']
@staticmethod
def get_transform():
transform = transforms.Compose(
[transforms.ToPILImage(), SequentialCropDisease.TRANSFORM])
return transform
@set_default_from_args("backbone")
def get_backbone():
return "vit"
@staticmethod
def get_loss():
return F.cross_entropy
@staticmethod
def get_normalization_transform():
return transforms.Normalize(mean=SequentialCropDisease.MEAN, std=SequentialCropDisease.STD)
@staticmethod
def get_denormalization_transform():
transform = DeNormalize(SequentialCropDisease.MEAN, SequentialCropDisease.STD)
return transform
@set_default_from_args('n_epochs')
def get_epochs(self):
return 5
@set_default_from_args('batch_size')
def get_batch_size(self):
return 128