forked from pytorch/rl
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Co-authored-by: Vincent Moens <vmoens@meta.com> Co-authored-by: Vincent Moens <vincentmoens@gmail.com>
- Loading branch information
1 parent
2555437
commit 3566388
Showing
11 changed files
with
1,793 additions
and
10 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,26 @@ | ||
#!/bin/bash | ||
|
||
#SBATCH --job-name=td3bc_offline | ||
#SBATCH --ntasks=32 | ||
#SBATCH --cpus-per-task=1 | ||
#SBATCH --gres=gpu:1 | ||
#SBATCH --output=slurm_logs/td3bc_offline_%j.txt | ||
#SBATCH --error=slurm_errors/td3bc_offline_%j.txt | ||
|
||
current_commit=$(git rev-parse --short HEAD) | ||
project_name="torchrl-example-check-$current_commit" | ||
group_name="td3bc_offline" | ||
export PYTHONPATH=$(dirname $(dirname $PWD)) | ||
python $PYTHONPATH/sota-implementations/td3_bc/td3_bc.py \ | ||
logger.backend=wandb \ | ||
logger.project_name="$project_name" \ | ||
logger.group_name="$group_name" | ||
|
||
# Capture the exit status of the Python command | ||
exit_status=$? | ||
# Write the exit status to a file | ||
if [ $exit_status -eq 0 ]; then | ||
echo "${group_name}_${SLURM_JOB_ID}=success" >>> report.log | ||
else | ||
echo "${group_name}_${SLURM_JOB_ID}=error" >>> report.log | ||
fi |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -65,6 +65,7 @@ scripts=( | |
run_ppo_mujoco.sh | ||
run_sac.sh | ||
run_td3.sh | ||
run_td3bc.sh | ||
run_dt.sh | ||
run_dt_online.sh | ||
) | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,45 @@ | ||
# task and env | ||
env: | ||
name: HalfCheetah-v4 # Use v4 to get rid of mujoco-py dependency | ||
task: "" | ||
library: gymnasium | ||
seed: 42 | ||
max_episode_steps: 1000 | ||
|
||
# replay buffer | ||
replay_buffer: | ||
dataset: halfcheetah-medium-v2 | ||
batch_size: 256 | ||
|
||
# optim | ||
optim: | ||
gradient_steps: 100000 | ||
gamma: 0.99 | ||
loss_function: l2 | ||
lr: 3.0e-4 | ||
weight_decay: 0.0 | ||
adam_eps: 1e-4 | ||
batch_size: 256 | ||
target_update_polyak: 0.995 | ||
policy_update_delay: 2 | ||
policy_noise: 0.2 | ||
noise_clip: 0.5 | ||
alpha: 2.5 | ||
|
||
# network | ||
network: | ||
hidden_sizes: [256, 256] | ||
activation: relu | ||
device: null | ||
|
||
# logging | ||
logger: | ||
backend: wandb | ||
project_name: td3+bc_${replay_buffer.dataset} | ||
group_name: null | ||
exp_name: TD3+BC_${replay_buffer.dataset} | ||
mode: online | ||
eval_iter: 5000 | ||
eval_steps: 1000 | ||
eval_envs: 1 | ||
video: False |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,146 @@ | ||
# Copyright (c) Meta Platforms, Inc. and affiliates. | ||
# | ||
# This source code is licensed under the MIT license found in the | ||
# LICENSE file in the root directory of this source tree. | ||
"""TD3+BC Example. | ||
This is a self-contained example of an offline RL TD3+BC training script. | ||
The helper functions are coded in the utils.py associated with this script. | ||
""" | ||
import time | ||
|
||
import hydra | ||
import numpy as np | ||
import torch | ||
import tqdm | ||
from torchrl._utils import logger as torchrl_logger | ||
|
||
from torchrl.envs import set_gym_backend | ||
from torchrl.envs.utils import ExplorationType, set_exploration_type | ||
from torchrl.record.loggers import generate_exp_name, get_logger | ||
|
||
from utils import ( | ||
dump_video, | ||
log_metrics, | ||
make_environment, | ||
make_loss_module, | ||
make_offline_replay_buffer, | ||
make_optimizer, | ||
make_td3_agent, | ||
) | ||
|
||
|
||
@hydra.main(config_path="", config_name="config") | ||
def main(cfg: "DictConfig"): # noqa: F821 | ||
set_gym_backend(cfg.env.library).set() | ||
|
||
# Create logger | ||
exp_name = generate_exp_name("TD3BC-offline", cfg.logger.exp_name) | ||
logger = None | ||
if cfg.logger.backend: | ||
logger = get_logger( | ||
logger_type=cfg.logger.backend, | ||
logger_name="td3bc_logging", | ||
experiment_name=exp_name, | ||
wandb_kwargs={ | ||
"mode": cfg.logger.mode, | ||
"config": dict(cfg), | ||
"project": cfg.logger.project_name, | ||
"group": cfg.logger.group_name, | ||
}, | ||
) | ||
|
||
# Set seeds | ||
torch.manual_seed(cfg.env.seed) | ||
np.random.seed(cfg.env.seed) | ||
device = cfg.network.device | ||
if device in ("", None): | ||
if torch.cuda.is_available(): | ||
device = "cuda:0" | ||
else: | ||
device = "cpu" | ||
device = torch.device(device) | ||
|
||
# Creante env | ||
eval_env = make_environment( | ||
cfg, | ||
logger=logger, | ||
) | ||
|
||
# Create replay buffer | ||
replay_buffer = make_offline_replay_buffer(cfg.replay_buffer) | ||
|
||
# Create agent | ||
model, _ = make_td3_agent(cfg, eval_env, device) | ||
|
||
# Create loss | ||
loss_module, target_net_updater = make_loss_module(cfg.optim, model) | ||
|
||
# Create optimizer | ||
optimizer_actor, optimizer_critic = make_optimizer(cfg.optim, loss_module) | ||
|
||
gradient_steps = cfg.optim.gradient_steps | ||
evaluation_interval = cfg.logger.eval_iter | ||
eval_steps = cfg.logger.eval_steps | ||
delayed_updates = cfg.optim.policy_update_delay | ||
update_counter = 0 | ||
pbar = tqdm.tqdm(range(gradient_steps)) | ||
# Training loop | ||
start_time = time.time() | ||
for i in pbar: | ||
pbar.update(1) | ||
# Update actor every delayed_updates | ||
update_counter += 1 | ||
update_actor = update_counter % delayed_updates == 0 | ||
|
||
# Sample from replay buffer | ||
sampled_tensordict = replay_buffer.sample() | ||
if sampled_tensordict.device != device: | ||
sampled_tensordict = sampled_tensordict.to(device) | ||
else: | ||
sampled_tensordict = sampled_tensordict.clone() | ||
|
||
# Compute loss | ||
q_loss, *_ = loss_module.qvalue_loss(sampled_tensordict) | ||
|
||
# Update critic | ||
optimizer_critic.zero_grad() | ||
q_loss.backward() | ||
optimizer_critic.step() | ||
q_loss.item() | ||
|
||
to_log = {"q_loss": q_loss.item()} | ||
|
||
# Update actor | ||
if update_actor: | ||
actor_loss, actorloss_metadata = loss_module.actor_loss(sampled_tensordict) | ||
optimizer_actor.zero_grad() | ||
actor_loss.backward() | ||
optimizer_actor.step() | ||
|
||
# Update target params | ||
target_net_updater.step() | ||
|
||
to_log["actor_loss"] = actor_loss.item() | ||
to_log.update(actorloss_metadata) | ||
|
||
# evaluation | ||
if i % evaluation_interval == 0: | ||
with set_exploration_type(ExplorationType.MODE), torch.no_grad(): | ||
eval_td = eval_env.rollout( | ||
max_steps=eval_steps, policy=model[0], auto_cast_to_device=True | ||
) | ||
eval_env.apply(dump_video) | ||
eval_reward = eval_td["next", "reward"].sum(1).mean().item() | ||
to_log["evaluation_reward"] = eval_reward | ||
if logger is not None: | ||
log_metrics(logger, to_log, i) | ||
|
||
pbar.close() | ||
torchrl_logger.info(f"Training time: {time.time() - start_time}") | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
Oops, something went wrong.