forked from pytorch/rl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmultiagent.py
1054 lines (942 loc) · 42.2 KB
/
multiagent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import annotations
import abc
from copy import deepcopy
from textwrap import indent
from typing import Optional, Sequence, Tuple, Type, Union
import numpy as np
import torch
from tensordict import TensorDict
from torch import nn
from torchrl.data.utils import DEVICE_TYPING
from torchrl.modules.models import ConvNet, MLP
from torchrl.modules.models.utils import _reset_parameters_recursive
class MultiAgentNetBase(nn.Module):
"""A base class for multi-agent networks.
.. note:: to initialize the MARL module parameters with the `torch.nn.init`
module, please refer to :meth:`~.get_stateful_net` and :meth:`~.from_stateful_net`
methods.
"""
_empty_net: nn.Module
def __init__(
self,
*,
n_agents: int,
centralized: bool | None = None,
share_params: bool | None = None,
agent_dim: int | None = None,
vmap_randomness: str = "different",
use_td_params: bool = True,
**kwargs,
):
super().__init__()
# For backward compatibility
centralized = kwargs.pop("centralised", centralized)
if centralized is None:
raise TypeError("centralized arg must be passed.")
if share_params is None:
raise TypeError("share_params arg must be passed.")
if agent_dim is None:
raise TypeError("agent_dim arg must be passed.")
self.use_td_params = use_td_params
self.n_agents = n_agents
self.share_params = share_params
self.centralized = centralized
self.agent_dim = agent_dim
self._vmap_randomness = vmap_randomness
agent_networks = [
self._build_single_net(**kwargs)
for _ in range(self.n_agents if not self.share_params else 1)
]
initialized = True
for p in agent_networks[0].parameters():
if isinstance(p, torch.nn.UninitializedParameter):
initialized = False
break
self.initialized = initialized
self._make_params(agent_networks)
# We make sure all params and buffers are on 'meta' device
# To do this, we set the device keyword arg to 'meta', we also temporarily change
# the default device. Finally, we convert all params to 'meta' tensors that are not params.
kwargs["device"] = "meta"
with torch.device("meta"):
try:
self._empty_net = self._build_single_net(**kwargs)
except NotImplementedError as err:
if "Cannot copy out of meta tensor" in str(err):
raise RuntimeError(
"The network was built using `factory().to(device), build the network directly "
"on device using `factory(device=device)` instead."
)
# Remove all parameters
TensorDict.from_module(self._empty_net).data.to("meta").to_module(
self._empty_net
)
if not self.use_td_params:
self.params.to_module(self._empty_net)
@property
def vmap_randomness(self):
if self.initialized:
return self._vmap_randomness
# The class _BatchedUninitializedParameter and buffer are not batched
# by vmap so using "different" will raise an exception because vmap can't find
# the batch dimension. This is ok though since we won't have the same config
# for every element (as one might expect from "same").
return "same"
def _make_params(self, agent_networks):
if self.share_params:
self.params = TensorDict.from_module(
agent_networks[0], as_module=self.use_td_params
)
else:
self.params = TensorDict.from_modules(
*agent_networks, as_module=self.use_td_params
)
@abc.abstractmethod
def _build_single_net(self, *, device, **kwargs):
...
@abc.abstractmethod
def _pre_forward_check(self, inputs):
...
@staticmethod
def vmap_func_module(module, *args, **kwargs):
def exec_module(params, *input):
with params.to_module(module):
return module(*input)
return torch.vmap(exec_module, *args, **kwargs)
def forward(self, *inputs: Tuple[torch.Tensor]) -> torch.Tensor:
if len(inputs) > 1:
inputs = torch.cat([*inputs], -1)
else:
inputs = inputs[0]
inputs = self._pre_forward_check(inputs)
# If parameters are not shared, each agent has its own network
if not self.share_params:
if self.centralized:
output = self.vmap_func_module(
self._empty_net, (0, None), (-2,), randomness=self.vmap_randomness
)(self.params, inputs)
else:
output = self.vmap_func_module(
self._empty_net,
(0, self.agent_dim),
(-2,),
randomness=self.vmap_randomness,
)(self.params, inputs)
# If parameters are shared, agents use the same network
else:
with self.params.to_module(self._empty_net):
output = self._empty_net(inputs)
if self.centralized:
# If the parameters are shared, and it is centralized, all agents will have the same output
# We expand it to maintain the agent dimension, but values will be the same for all agents
n_agent_outputs = output.shape[-1]
output = output.view(*output.shape[:-1], n_agent_outputs)
output = output.unsqueeze(-2)
output = output.expand(
*output.shape[:-2], self.n_agents, n_agent_outputs
)
if output.shape[-2] != (self.n_agents):
raise ValueError(
f"Multi-agent network expected output with shape[-2]={self.n_agents}"
f" but got {output.shape}"
)
return output
def get_stateful_net(self, copy: bool = True):
"""Returns a stateful version of the network.
This can be used to initialize parameters.
Such networks will often not be callable out-of-the-box and will require a `vmap` call
to be executable.
Args:
copy (bool, optional): if ``True``, a deepcopy of the network is made.
Defaults to ``True``.
If the parameters are modified in-place (recommended) there is no need to copy the
parameters back into the MARL module.
See :meth:`~.from_stateful_net` for details on how to re-populate the MARL model with
parameters that have been re-initialized out-of-place.
Examples:
>>> from torchrl.modules import MultiAgentMLP
>>> import torch
>>> n_agents = 6
>>> n_agent_inputs=3
>>> n_agent_outputs=2
>>> batch = 64
>>> obs = torch.zeros(batch, n_agents, n_agent_inputs)
>>> mlp = MultiAgentMLP(
... n_agent_inputs=n_agent_inputs,
... n_agent_outputs=n_agent_outputs,
... n_agents=n_agents,
... centralized=False,
... share_params=False,
... depth=2,
... )
>>> snet = mlp.get_stateful_net()
>>> def init(module):
... if hasattr(module, "weight"):
... torch.nn.init.kaiming_normal_(module.weight)
>>> snet.apply(init)
>>> # If the module has been updated out-of-place (not the case here) we can reset the params
>>> mlp.from_stateful_net(snet)
"""
if copy:
try:
net = deepcopy(self._empty_net)
except RuntimeError as err:
raise RuntimeError(
"Failed to deepcopy the module, consider using copy=False."
) from err
else:
net = self._empty_net
self.params.to_module(net)
return net
def from_stateful_net(self, stateful_net: nn.Module):
"""Populates the parameters given a stateful version of the network.
See :meth:`~.get_stateful_net` for details on how to gather a stateful version of the network.
Args:
stateful_net (nn.Module): the stateful network from which the params should be
gathered.
"""
params = TensorDict.from_module(stateful_net, as_module=True)
keyset0 = set(params.keys(True, True))
keyset1 = set(self.params.keys(True, True))
if keyset0 != keyset1:
raise RuntimeError(
f"The keys of params and provided module differ: "
f"{keyset1-keyset0} are in self.params and not in the module, "
f"{keyset0-keyset1} are in the module but not in self.params."
)
self.params.data.update_(params.data)
def __repr__(self):
empty_net = self._empty_net
with self.params.to_module(empty_net):
module_repr = indent(str(empty_net), 4 * " ")
n_agents = indent(f"n_agents={self.n_agents}", 4 * " ")
share_params = indent(f"share_params={self.share_params}", 4 * " ")
centralized = indent(f"centralized={self.centralized}", 4 * " ")
agent_dim = indent(f"agent_dim={self.agent_dim}", 4 * " ")
return f"{self.__class__.__name__}(\n{module_repr},\n{n_agents},\n{share_params},\n{centralized},\n{agent_dim})"
def reset_parameters(self):
"""Resets the parameters of the model."""
def vmap_reset_module(module, *args, **kwargs):
def reset_module(params):
with params.to_module(module):
_reset_parameters_recursive(module)
return params
return torch.vmap(reset_module, *args, **kwargs)
if not self.share_params:
vmap_reset_module(self._empty_net, randomness="different")(self.params)
else:
with self.params.to_module(self._empty_net):
_reset_parameters_recursive(self._empty_net)
class MultiAgentMLP(MultiAgentNetBase):
"""Mult-agent MLP.
This is an MLP that can be used in multi-agent contexts.
For example, as a policy or as a value function.
See `examples/multiagent` for examples.
It expects inputs with shape (*B, n_agents, n_agent_inputs)
It returns outputs with shape (*B, n_agents, n_agent_outputs)
If `share_params` is True, the same MLP will be used to make the forward pass for all agents (homogeneous policies).
Otherwise, each agent will use a different MLP to process its input (heterogeneous policies).
If `centralized` is True, each agent will use the inputs of all agents to compute its output
(n_agent_inputs * n_agents will be the number of inputs for one agent).
Otherwise, each agent will only use its data as input.
Args:
n_agent_inputs (int or None): number of inputs for each agent. If ``None``,
the number of inputs is lazily instantiated during the first call.
n_agent_outputs (int): number of outputs for each agent.
n_agents (int): number of agents.
Keyword Args:
centralized (bool): If `centralized` is True, each agent will use the inputs of all agents to compute its output
(n_agent_inputs * n_agents will be the number of inputs for one agent).
Otherwise, each agent will only use its data as input.
share_params (bool): If `share_params` is True, the same MLP will be used to make the forward pass
for all agents (homogeneous policies). Otherwise, each agent will use a different MLP to process
its input (heterogeneous policies).
device (str or toech.device, optional): device to create the module on.
depth (int, optional): depth of the network. A depth of 0 will produce a single linear layer network with the
desired input and output size. A length of 1 will create 2 linear layers etc. If no depth is indicated,
the depth information should be contained in the num_cells argument (see below). If num_cells is an
iterable and depth is indicated, both should match: len(num_cells) must be equal to depth.
default: 3.
num_cells (int or Sequence[int], optional): number of cells of every layer in between the input and output. If
an integer is provided, every layer will have the same number of cells. If an iterable is provided,
the linear layers out_features will match the content of num_cells.
default: 32.
activation_class (Type[nn.Module]): activation class to be used.
default: nn.Tanh.
use_td_params (bool, optional): if ``True``, the parameters can be found in `self.params` which is a
:class:`~tensordict.nn.TensorDictParams` object (which inherits both from `TensorDict` and `nn.Module`).
If ``False``, parameters are contained in `self._empty_net`. All things considered, these two approaches
should be roughly identical but not interchangeable: for instance, a ``state_dict`` created with
``use_td_params=True`` cannot be used when ``use_td_params=False``.
**kwargs: for :class:`torchrl.modules.models.MLP` can be passed to customize the MLPs.
.. note:: to initialize the MARL module parameters with the `torch.nn.init`
module, please refer to :meth:`~.get_stateful_net` and :meth:`~.from_stateful_net`
methods.
Examples:
>>> from torchrl.modules import MultiAgentMLP
>>> import torch
>>> n_agents = 6
>>> n_agent_inputs=3
>>> n_agent_outputs=2
>>> batch = 64
>>> obs = torch.zeros(batch, n_agents, n_agent_inputs)
>>> # instantiate a local network shared by all agents (e.g. a parameter-shared policy)
>>> mlp = MultiAgentMLP(
... n_agent_inputs=n_agent_inputs,
... n_agent_outputs=n_agent_outputs,
... n_agents=n_agents,
... centralized=False,
... share_params=True,
... depth=2,
... )
>>> print(mlp)
MultiAgentMLP(
(agent_networks): ModuleList(
(0): MLP(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): Tanh()
(2): Linear(in_features=32, out_features=32, bias=True)
(3): Tanh()
(4): Linear(in_features=32, out_features=2, bias=True)
)
)
)
>>> assert mlp(obs).shape == (batch, n_agents, n_agent_outputs)
Now let's instantiate a centralized network shared by all agents (e.g. a centalised value function)
>>> mlp = MultiAgentMLP(
... n_agent_inputs=n_agent_inputs,
... n_agent_outputs=n_agent_outputs,
... n_agents=n_agents,
... centralized=True,
... share_params=True,
... depth=2,
... )
>>> print(mlp)
MultiAgentMLP(
(agent_networks): ModuleList(
(0): MLP(
(0): Linear(in_features=18, out_features=32, bias=True)
(1): Tanh()
(2): Linear(in_features=32, out_features=32, bias=True)
(3): Tanh()
(4): Linear(in_features=32, out_features=2, bias=True)
)
)
)
We can see that the input to the first layer is n_agents * n_agent_inputs,
this is because in the case the net acts as a centralized mlp (like a single huge agent)
>>> assert mlp(obs).shape == (batch, n_agents, n_agent_outputs)
Outputs will be identical for all agents.
Now we can do both examples just shown but with an independent set of parameters for each agent
Let's show the centralized=False case.
>>> mlp = MultiAgentMLP(
... n_agent_inputs=n_agent_inputs,
... n_agent_outputs=n_agent_outputs,
... n_agents=n_agents,
... centralized=False,
... share_params=False,
... depth=2,
... )
>>> print(mlp)
MultiAgentMLP(
(agent_networks): ModuleList(
(0-5): 6 x MLP(
(0): Linear(in_features=3, out_features=32, bias=True)
(1): Tanh()
(2): Linear(in_features=32, out_features=32, bias=True)
(3): Tanh()
(4): Linear(in_features=32, out_features=2, bias=True)
)
)
)
We can see that this is the same as in the first example, but now we have 6 MLPs, one per agent!
>>> assert mlp(obs).shape == (batch, n_agents, n_agent_outputs)
"""
def __init__(
self,
n_agent_inputs: int | None,
n_agent_outputs: int,
n_agents: int,
*,
centralized: bool | None = None,
share_params: bool | None = None,
device: Optional[DEVICE_TYPING] = None,
depth: Optional[int] = None,
num_cells: Optional[Union[Sequence, int]] = None,
activation_class: Optional[Type[nn.Module]] = nn.Tanh,
use_td_params: bool = True,
**kwargs,
):
self.n_agents = n_agents
self.n_agent_inputs = n_agent_inputs
self.n_agent_outputs = n_agent_outputs
self.share_params = share_params
self.centralized = centralized
self.num_cells = num_cells
self.activation_class = activation_class
self.depth = depth
super().__init__(
n_agents=n_agents,
centralized=centralized,
share_params=share_params,
device=device,
agent_dim=-2,
use_td_params=use_td_params,
**kwargs,
)
def _pre_forward_check(self, inputs):
if inputs.shape[-2] != self.n_agents:
raise ValueError(
f"Multi-agent network expected input with shape[-2]={self.n_agents},"
f" but got {inputs.shape}"
)
# If the model is centralized, agents have full observability
if self.centralized:
inputs = inputs.flatten(-2, -1)
return inputs
def _build_single_net(self, *, device, **kwargs):
n_agent_inputs = self.n_agent_inputs
if self.centralized and n_agent_inputs is not None:
n_agent_inputs = self.n_agent_inputs * self.n_agents
return MLP(
in_features=n_agent_inputs,
out_features=self.n_agent_outputs,
depth=self.depth,
num_cells=self.num_cells,
activation_class=self.activation_class,
device=device,
**kwargs,
)
class MultiAgentConvNet(MultiAgentNetBase):
"""Multi-agent CNN.
In MARL settings, agents may or may not share the same policy for their actions: we say that the parameters can be shared or not. Similarly, a network may take the entire observation space (across agents) or on a per-agent basis to compute its output, which we refer to as "centralized" and "non-centralized", respectively.
It expects inputs with shape ``(*B, n_agents, channels, x, y)``.
.. note:: to initialize the MARL module parameters with the `torch.nn.init`
module, please refer to :meth:`~.get_stateful_net` and :meth:`~.from_stateful_net`
methods.
Args:
n_agents (int): number of agents.
centralized (bool): If ``True``, each agent will use the inputs of all agents to compute its output, resulting in input of shape ``(*B, n_agents * channels, x, y)``. Otherwise, each agent will only use its data as input.
share_params (bool): If ``True``, the same :class:`~torchrl.modules.ConvNet` will be used to make the forward pass
for all agents (homogeneous policies). Otherwise, each agent will use a different :class:`~torchrl.modules.ConvNet` to process
its input (heterogeneous policies).
Keyword Args:
in_features (int, optional): the input feature dimension. If left to ``None``,
a lazy module is used.
device (str or torch.device, optional): device to create the module on.
num_cells (int or Sequence[int], optional): number of cells of every layer in between the input and output. If
an integer is provided, every layer will have the same number of cells. If an iterable is provided,
the linear layers ``out_features`` will match the content of ``num_cells``.
kernel_sizes (int, Sequence[Union[int, Sequence[int]]]): Kernel size(s) of the convolutional network.
Defaults to ``5``.
strides (int or Sequence[int]): Stride(s) of the convolutional network. If iterable, the length must match the
depth, defined by the num_cells or depth arguments.
Defaults to ``2``.
activation_class (Type[nn.Module]): activation class to be used.
Default to :class:`torch.nn.ELU`.
use_td_params (bool, optional): if ``True``, the parameters can be found in `self.params` which is a
:class:`~tensordict.nn.TensorDictParams` object (which inherits both from `TensorDict` and `nn.Module`).
If ``False``, parameters are contained in `self._empty_net`. All things considered, these two approaches
should be roughly identical but not interchangeable: for instance, a ``state_dict`` created with
``use_td_params=True`` cannot be used when ``use_td_params=False``.
**kwargs: for :class:`~torchrl.modules.models.ConvNet` can be passed to customize the ConvNet.
Examples:
>>> import torch
>>> from torchrl.modules import MultiAgentConvNet
>>> batch = (3,2)
>>> n_agents = 7
>>> channels, x, y = 3, 100, 100
>>> obs = torch.randn(*batch, n_agents, channels, x, y)
>>> # Let's consider a centralized network with shared parameters.
>>> cnn = MultiAgentConvNet(
... n_agents,
... centralized = True,
... share_params = True
... )
>>> print(cnn)
MultiAgentConvNet(
(agent_networks): ModuleList(
(0): ConvNet(
(0): LazyConv2d(0, 32, kernel_size=(5, 5), stride=(2, 2))
(1): ELU(alpha=1.0)
(2): Conv2d(32, 32, kernel_size=(5, 5), stride=(2, 2))
(3): ELU(alpha=1.0)
(4): Conv2d(32, 32, kernel_size=(5, 5), stride=(2, 2))
(5): ELU(alpha=1.0)
(6): SquashDims()
)
)
)
>>> result = cnn(obs)
>>> # The final dimension of the resulting tensor would be determined based on the layer definition arguments and the shape of input 'obs'.
>>> print(result.shape)
torch.Size([3, 2, 7, 2592])
>>> # Since both observations and parameters are shared, we expect all agents to have identical outputs (eg. for a value function)
>>> print(all(result[0,0,0] == result[0,0,1]))
True
>>> # Alternatively, a local network with parameter sharing (eg. decentralized weight sharing policy)
>>> cnn = MultiAgentConvNet(
... n_agents,
... centralized = False,
... share_params = True
... )
>>> print(cnn)
MultiAgentConvNet(
(agent_networks): ModuleList(
(0): ConvNet(
(0): Conv2d(4, 32, kernel_size=(5, 5), stride=(2, 2))
(1): ELU(alpha=1.0)
(2): Conv2d(32, 32, kernel_size=(5, 5), stride=(2, 2))
(3): ELU(alpha=1.0)
(4): Conv2d(32, 32, kernel_size=(5, 5), stride=(2, 2))
(5): ELU(alpha=1.0)
(6): SquashDims()
)
)
)
>>> print(result.shape)
torch.Size([3, 2, 7, 2592])
>>> # Parameters are shared but not observations, hence each agent has a different output.
>>> print(all(result[0,0,0] == result[0,0,1]))
False
>>> # Or multiple local networks identical in structure but with differing weights.
>>> cnn = MultiAgentConvNet(
... n_agents,
... centralized = False,
... share_params = False
... )
>>> print(cnn)
MultiAgentConvNet(
(agent_networks): ModuleList(
(0-6): 7 x ConvNet(
(0): Conv2d(4, 32, kernel_size=(5, 5), stride=(2, 2))
(1): ELU(alpha=1.0)
(2): Conv2d(32, 32, kernel_size=(5, 5), stride=(2, 2))
(3): ELU(alpha=1.0)
(4): Conv2d(32, 32, kernel_size=(5, 5), stride=(2, 2))
(5): ELU(alpha=1.0)
(6): SquashDims()
)
)
)
>>> print(result.shape)
torch.Size([3, 2, 7, 2592])
>>> print(all(result[0,0,0] == result[0,0,1]))
False
>>> # Or where inputs are shared but not parameters.
>>> cnn = MultiAgentConvNet(
... n_agents,
... centralized = True,
... share_params = False
... )
>>> print(cnn)
MultiAgentConvNet(
(agent_networks): ModuleList(
(0-6): 7 x ConvNet(
(0): Conv2d(28, 32, kernel_size=(5, 5), stride=(2, 2))
(1): ELU(alpha=1.0)
(2): Conv2d(32, 32, kernel_size=(5, 5), stride=(2, 2))
(3): ELU(alpha=1.0)
(4): Conv2d(32, 32, kernel_size=(5, 5), stride=(2, 2))
(5): ELU(alpha=1.0)
(6): SquashDims()
)
)
)
>>> print(result.shape)
torch.Size([3, 2, 7, 2592])
>>> print(all(result[0,0,0] == result[0,0,1]))
False
"""
def __init__(
self,
n_agents: int,
centralized: bool | None = None,
share_params: bool | None = None,
*,
in_features: int | None = None,
device: DEVICE_TYPING | None = None,
num_cells: Sequence[int] | None = None,
kernel_sizes: Union[Sequence[Union[int, Sequence[int]]], int] = 5,
strides: Union[Sequence, int] = 2,
paddings: Union[Sequence, int] = 0,
activation_class: Type[nn.Module] = nn.ELU,
use_td_params: bool = True,
**kwargs,
):
self.in_features = in_features
self.num_cells = num_cells
self.strides = strides
self.kernel_sizes = kernel_sizes
self.paddings = paddings
self.activation_class = activation_class
super().__init__(
n_agents=n_agents,
centralized=centralized,
share_params=share_params,
device=device,
agent_dim=-4,
use_td_params=use_td_params,
**kwargs,
)
def _build_single_net(self, *, device, **kwargs):
in_features = self.in_features
if self.centralized and in_features is not None:
in_features = in_features * self.n_agents
return ConvNet(
in_features=in_features,
num_cells=self.num_cells,
kernel_sizes=self.kernel_sizes,
strides=self.strides,
paddings=self.paddings,
activation_class=self.activation_class,
device=device,
**kwargs,
)
def _pre_forward_check(self, inputs):
if len(inputs.shape) < 4:
raise ValueError(
"""Multi-agent network expects (*batch_size, agent_index, x, y, channels)"""
)
if inputs.shape[-4] != self.n_agents:
raise ValueError(
f"""Multi-agent network expects {self.n_agents} but got {inputs.shape[-4]}"""
)
if self.centralized:
# If the model is centralized, agents have full observability
inputs = torch.flatten(inputs, -4, -3)
return inputs
class Mixer(nn.Module):
"""A multi-agent value mixer.
It transforms the local value of each agent's chosen action of shape (*B, self.n_agents, 1),
into a global value with shape (*B, 1).
Used with the :class:`torchrl.objectives.QMixerLoss`.
See `examples/multiagent/qmix_vdn.py` for examples.
Args:
n_agents (int): number of agents.
needs_state (bool): whether the mixer takes a global state as input.
state_shape (tuple or torch.Size): the shape of the state (excluding eventual leading batch dimensions).
device (str or torch.Device): torch device for the network.
Examples:
Creating a VDN mixer
>>> import torch
>>> from tensordict import TensorDict
>>> from tensordict.nn import TensorDictModule
>>> from torchrl.modules.models.multiagent import VDNMixer
>>> n_agents = 4
>>> vdn = TensorDictModule(
... module=VDNMixer(
... n_agents=n_agents,
... device="cpu",
... ),
... in_keys=[("agents","chosen_action_value")],
... out_keys=["chosen_action_value"],
... )
>>> td = TensorDict({"agents": TensorDict({"chosen_action_value": torch.zeros(32, n_agents, 1)}, [32, n_agents])}, [32])
>>> td
TensorDict(
fields={
agents: TensorDict(
fields={
chosen_action_value: Tensor(shape=torch.Size([32, 4, 1]), device=cpu, dtype=torch.float32, is_shared=False)},
batch_size=torch.Size([32, 4]),
device=None,
is_shared=False)},
batch_size=torch.Size([32]),
device=None,
is_shared=False)
>>> vdn(td)
TensorDict(
fields={
agents: TensorDict(
fields={
chosen_action_value: Tensor(shape=torch.Size([32, 4, 1]), device=cpu, dtype=torch.float32, is_shared=False)},
batch_size=torch.Size([32, 4]),
device=None,
is_shared=False),
chosen_action_value: Tensor(shape=torch.Size([32, 1]), device=cpu, dtype=torch.float32, is_shared=False)},
batch_size=torch.Size([32]),
device=None,
is_shared=False)
Creating a QMix mixer
>>> import torch
>>> from tensordict import TensorDict
>>> from tensordict.nn import TensorDictModule
>>> from torchrl.modules.models.multiagent import QMixer
>>> n_agents = 4
>>> qmix = TensorDictModule(
... module=QMixer(
... state_shape=(64, 64, 3),
... mixing_embed_dim=32,
... n_agents=n_agents,
... device="cpu",
... ),
... in_keys=[("agents", "chosen_action_value"), "state"],
... out_keys=["chosen_action_value"],
... )
>>> td = TensorDict({"agents": TensorDict({"chosen_action_value": torch.zeros(32, n_agents, 1)}, [32, n_agents]), "state": torch.zeros(32, 64, 64, 3)}, [32])
>>> td
TensorDict(
fields={
agents: TensorDict(
fields={
chosen_action_value: Tensor(shape=torch.Size([32, 4, 1]), device=cpu, dtype=torch.float32, is_shared=False)},
batch_size=torch.Size([32, 4]),
device=None,
is_shared=False),
state: Tensor(shape=torch.Size([32, 64, 64, 3]), device=cpu, dtype=torch.float32, is_shared=False)},
batch_size=torch.Size([32]),
device=None,
is_shared=False)
>>> vdn(td)
TensorDict(
fields={
agents: TensorDict(
fields={
chosen_action_value: Tensor(shape=torch.Size([32, 4, 1]), device=cpu, dtype=torch.float32, is_shared=False)},
batch_size=torch.Size([32, 4]),
device=None,
is_shared=False),
chosen_action_value: Tensor(shape=torch.Size([32, 1]), device=cpu, dtype=torch.float32, is_shared=False),
state: Tensor(shape=torch.Size([32, 64, 64, 3]), device=cpu, dtype=torch.float32, is_shared=False)},
batch_size=torch.Size([32]),
device=None,
is_shared=False)
"""
def __init__(
self,
n_agents: int,
needs_state: bool,
state_shape: Union[Tuple[int, ...], torch.Size],
device: DEVICE_TYPING,
):
super().__init__()
self.n_agents = n_agents
self.device = device
self.needs_state = needs_state
self.state_shape = state_shape
def forward(self, *inputs: Tuple[torch.Tensor]) -> torch.Tensor:
"""Forward pass of the mixer.
Args:
*inputs: The first input should be the value of the chosen action of shape (*B, self.n_agents, 1),
representing the local q value of each agent.
The second input (optional, used only in some mixers)
is the shared state of all agents of shape (*B, *self.state_shape).
Returns:
The global value of the chosen actions obtained after mixing, with shape (*B, 1)
"""
if not self.needs_state:
if len(inputs) > 1:
raise ValueError(
"Mixer that doesn't need state was passed more than 1 input"
)
chosen_action_value = inputs[0]
else:
if len(inputs) != 2:
raise ValueError("Mixer that needs state was passed more than 2 inputs")
chosen_action_value, state = inputs
if state.shape[-len(self.state_shape) :] != self.state_shape:
raise ValueError(
f"Mixer network expected state with ending shape {self.state_shape},"
f" but got state shape {state.shape}"
)
if chosen_action_value.shape[-2:] != (self.n_agents, 1):
raise ValueError(
f"Mixer network expected chosen_action_value with last 2 dimensions {(self.n_agents,1)},"
f" but got {chosen_action_value.shape}"
)
batch_dims = chosen_action_value.shape[:-2]
if not self.needs_state:
output = self.mix(chosen_action_value, None)
else:
output = self.mix(chosen_action_value, state)
if output.shape != (*batch_dims, 1):
raise ValueError(
f"Mixer network expected output with same shape as input minus the multi-agent dimension,"
f" but got {output.shape}"
)
return output
def mix(self, chosen_action_value: torch.Tensor, state: torch.Tensor):
"""Forward pass for the mixer.
Args:
chosen_action_value: Tensor of shape [*B, n_agents]
Returns:
chosen_action_value: Tensor of shape [*B]
"""
raise NotImplementedError
class VDNMixer(Mixer):
"""Value-Decomposition Network mixer.
Mixes the local Q values of the agents into a global Q value by summing them together.
From the paper https://arxiv.org/abs/1706.05296 .
It transforms the local value of each agent's chosen action of shape (*B, self.n_agents, 1),
into a global value with shape (*B, 1).
Used with the :class:`torchrl.objectives.QMixerLoss`.
See `examples/multiagent/qmix_vdn.py` for examples.
Args:
n_agents (int): number of agents.
device (str or torch.Device): torch device for the network.
Examples:
>>> import torch
>>> from tensordict import TensorDict
>>> from tensordict.nn import TensorDictModule
>>> from torchrl.modules.models.multiagent import VDNMixer
>>> n_agents = 4
>>> vdn = TensorDictModule(
... module=VDNMixer(
... n_agents=n_agents,
... device="cpu",
... ),
... in_keys=[("agents","chosen_action_value")],
... out_keys=["chosen_action_value"],
... )
>>> td = TensorDict({"agents": TensorDict({"chosen_action_value": torch.zeros(32, n_agents, 1)}, [32, n_agents])}, [32])
>>> td
TensorDict(
fields={
agents: TensorDict(
fields={
chosen_action_value: Tensor(shape=torch.Size([32, 4, 1]), device=cpu, dtype=torch.float32, is_shared=False)},
batch_size=torch.Size([32, 4]),
device=None,
is_shared=False)},
batch_size=torch.Size([32]),
device=None,
is_shared=False)
>>> vdn(td)
TensorDict(
fields={
agents: TensorDict(
fields={
chosen_action_value: Tensor(shape=torch.Size([32, 4, 1]), device=cpu, dtype=torch.float32, is_shared=False)},
batch_size=torch.Size([32, 4]),
device=None,
is_shared=False),
chosen_action_value: Tensor(shape=torch.Size([32, 1]), device=cpu, dtype=torch.float32, is_shared=False)},
batch_size=torch.Size([32]),
device=None,
is_shared=False)
"""
def __init__(
self,
n_agents: int,
device: DEVICE_TYPING,
):
super().__init__(
needs_state=False,
state_shape=torch.Size([]),
n_agents=n_agents,
device=device,
)
def mix(self, chosen_action_value: torch.Tensor, state: torch.Tensor):
return chosen_action_value.sum(dim=-2)
class QMixer(Mixer):
"""QMix mixer.
Mixes the local Q values of the agents into a global Q value through a monotonic
hyper-network whose parameters are obtained from a global state.
From the paper https://arxiv.org/abs/1803.11485 .
It transforms the local value of each agent's chosen action of shape (*B, self.n_agents, 1),
into a global value with shape (*B, 1).
Used with the :class:`torchrl.objectives.QMixerLoss`.
See `examples/multiagent/qmix_vdn.py` for examples.
Args:
state_shape (tuple or torch.Size): the shape of the state (excluding eventual leading batch dimensions).
mixing_embed_dim (int): the size of the mixing embedded dimension.
n_agents (int): number of agents.
device (str or torch.Device): torch device for the network.
Examples:
>>> import torch
>>> from tensordict import TensorDict
>>> from tensordict.nn import TensorDictModule
>>> from torchrl.modules.models.multiagent import QMixer
>>> n_agents = 4
>>> qmix = TensorDictModule(
... module=QMixer(
... state_shape=(64, 64, 3),
... mixing_embed_dim=32,
... n_agents=n_agents,
... device="cpu",
... ),
... in_keys=[("agents", "chosen_action_value"), "state"],
... out_keys=["chosen_action_value"],
... )
>>> td = TensorDict({"agents": TensorDict({"chosen_action_value": torch.zeros(32, n_agents, 1)}, [32, n_agents]), "state": torch.zeros(32, 64, 64, 3)}, [32])
>>> td
TensorDict(
fields={
agents: TensorDict(
fields={
chosen_action_value: Tensor(shape=torch.Size([32, 4, 1]), device=cpu, dtype=torch.float32, is_shared=False)},
batch_size=torch.Size([32, 4]),
device=None,
is_shared=False),
state: Tensor(shape=torch.Size([32, 64, 64, 3]), device=cpu, dtype=torch.float32, is_shared=False)},
batch_size=torch.Size([32]),
device=None,
is_shared=False)
>>> vdn(td)
TensorDict(
fields={
agents: TensorDict(
fields={
chosen_action_value: Tensor(shape=torch.Size([32, 4, 1]), device=cpu, dtype=torch.float32, is_shared=False)},
batch_size=torch.Size([32, 4]),
device=None,
is_shared=False),
chosen_action_value: Tensor(shape=torch.Size([32, 1]), device=cpu, dtype=torch.float32, is_shared=False),
state: Tensor(shape=torch.Size([32, 64, 64, 3]), device=cpu, dtype=torch.float32, is_shared=False)},
batch_size=torch.Size([32]),
device=None,
is_shared=False)
"""