forked from pytorch/rl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_env.py
3438 lines (3107 loc) · 123 KB
/
test_env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import contextlib
import functools
import gc
import os.path
import re
from collections import defaultdict
from functools import partial
from sys import platform
import numpy as np
import pytest
import torch
import yaml
from _utils_internal import (
_make_envs,
CARTPOLE_VERSIONED,
check_rollout_consistency_multikey_env,
decorate_thread_sub_func,
get_default_devices,
HALFCHEETAH_VERSIONED,
PENDULUM_VERSIONED,
PONG_VERSIONED,
rand_reset,
)
from mocking_classes import (
ActionObsMergeLinear,
AutoResetHeteroCountingEnv,
AutoResettingCountingEnv,
ContinuousActionConvMockEnv,
ContinuousActionConvMockEnvNumpy,
ContinuousActionVecMockEnv,
CountingBatchedEnv,
CountingEnv,
CountingEnvCountPolicy,
DiscreteActionConvMockEnv,
DiscreteActionConvMockEnvNumpy,
DiscreteActionVecMockEnv,
DummyModelBasedEnvBase,
EnvWithDynamicSpec,
EnvWithMetadata,
HeterogeneousCountingEnv,
HeterogeneousCountingEnvPolicy,
MockBatchedLockedEnv,
MockBatchedUnLockedEnv,
MockSerialEnv,
MultiKeyCountingEnv,
MultiKeyCountingEnvPolicy,
NestedCountingEnv,
)
from packaging import version
from tensordict import (
assert_allclose_td,
dense_stack_tds,
LazyStackedTensorDict,
TensorDict,
TensorDictBase,
)
from tensordict.nn import TensorDictModuleBase
from tensordict.utils import _unravel_key_to_tuple
from torch import nn
from torchrl.collectors import MultiSyncDataCollector, SyncDataCollector
from torchrl.data.tensor_specs import Categorical, Composite, NonTensor, Unbounded
from torchrl.envs import (
CatFrames,
CatTensors,
DoubleToFloat,
EnvBase,
EnvCreator,
ParallelEnv,
PendulumEnv,
SerialEnv,
TicTacToeEnv,
)
from torchrl.envs.batched_envs import _stackable
from torchrl.envs.gym_like import default_info_dict_reader
from torchrl.envs.libs.dm_control import _has_dmc, DMControlEnv
from torchrl.envs.libs.gym import _has_gym, gym_backend, GymEnv, GymWrapper
from torchrl.envs.transforms import Compose, StepCounter, TransformedEnv
from torchrl.envs.transforms.transforms import (
AutoResetEnv,
AutoResetTransform,
Transform,
)
from torchrl.envs.utils import (
_StepMDP,
_terminated_or_truncated,
check_env_specs,
check_marl_grouping,
make_composite_from_td,
MarlGroupMapType,
step_mdp,
)
from torchrl.modules import Actor, ActorCriticOperator, MLP, SafeModule, ValueOperator
from torchrl.modules.tensordict_module import WorldModelWrapper
gym_version = None
if _has_gym:
try:
import gymnasium as gym
except ModuleNotFoundError:
import gym
gym_version = version.parse(gym.__version__)
try:
this_dir = os.path.dirname(os.path.realpath(__file__))
with open(os.path.join(this_dir, "configs", "atari.yaml"), "r") as file:
atari_confs = yaml.load(file, Loader=yaml.FullLoader)
_atari_found = True
except FileNotFoundError:
_atari_found = False
atari_confs = defaultdict(lambda: "")
IS_OSX = platform == "darwin"
IS_WIN = platform == "win32"
if IS_WIN:
mp_ctx = "spawn"
else:
mp_ctx = "fork"
## TO BE FIXED: DiscreteActionProjection queries a randint on each worker, which leads to divergent results between
## the serial and parallel batched envs
# def _make_atari_env(atari_env):
# action_spec = GymEnv(atari_env + "-ram-v0").action_spec
# n_act = action_spec.shape[-1]
# return lambda **kwargs: TransformedEnv(
# GymEnv(atari_env + "-ram-v0", **kwargs),
# DiscreteActionProjection(max_N=18, M=n_act),
# )
#
#
# @pytest.mark.skipif(
# "ALE/Pong-v5" not in _get_gym_envs(), reason="no Atari OpenAI Gym env available"
# )
# def test_composite_env():
# num_workers = 10
# frameskip = 2
# create_env_fn = [
# _make_atari_env(atari_env)
# for atari_env in atari_confs["atari_envs"][:num_workers]
# ]
# kwargs = {"frame_skip": frameskip}
#
# random_policy = lambda td: td.set(
# "action", torch.nn.functional.one_hot(torch.randint(18, (*td.batch_size,)), 18)
# )
# p = SerialEnv(num_workers, create_env_fn, create_env_kwargs=kwargs)
# seed = p.set_seed(0)
# p.reset()
# torch.manual_seed(seed)
# rollout1 = p.rollout(max_steps=100, policy=random_policy, auto_reset=False)
# p.close()
# del p
#
# p = ParallelEnv(num_workers, create_env_fn, create_env_kwargs=kwargs)
# seed = p.set_seed(0)
# p.reset()
# torch.manual_seed(seed)
# rollout0 = p.rollout(max_steps=100, policy=random_policy, auto_reset=False)
# p.close()
# del p
#
# assert_allclose_td(rollout1, rollout0)
@pytest.mark.skipif(not _has_gym, reason="no gym")
@pytest.mark.parametrize("env_name", [PENDULUM_VERSIONED, CARTPOLE_VERSIONED])
@pytest.mark.parametrize("frame_skip", [1, 4])
def test_env_seed(env_name, frame_skip, seed=0):
env_name = env_name()
env = GymEnv(env_name, frame_skip=frame_skip)
action = env.action_spec.rand()
env.set_seed(seed)
td0a = env.reset()
td1a = env.step(td0a.clone().set("action", action))
env.set_seed(seed)
td0b = env.fake_tensordict()
td0b = env.reset(tensordict=td0b)
td1b = env.step(td0b.exclude("next").clone().set("action", action))
assert_allclose_td(td0a, td0b.select(*td0a.keys()))
assert_allclose_td(td1a, td1b)
env.set_seed(
seed=seed + 10,
)
td0c = env.reset()
td1c = env.step(td0c.clone().set("action", action))
with pytest.raises(AssertionError):
assert_allclose_td(td0a, td0c.select(*td0a.keys()))
with pytest.raises(AssertionError):
assert_allclose_td(td1a, td1c)
env.close()
@pytest.mark.skipif(not _has_gym, reason="no gym")
@pytest.mark.parametrize("env_name", [PENDULUM_VERSIONED, PONG_VERSIONED])
@pytest.mark.parametrize("frame_skip", [1, 4])
def test_rollout(env_name, frame_skip, seed=0):
if env_name is PONG_VERSIONED and version.parse(
gym_backend().__version__
) < version.parse("0.19"):
# Then 100 steps in pong are not sufficient to detect a difference
pytest.skip("can't detect difference in gym rollout with this gym version.")
env_name = env_name()
env = GymEnv(env_name, frame_skip=frame_skip)
torch.manual_seed(seed)
np.random.seed(seed)
env.set_seed(seed)
env.reset()
rollout1 = env.rollout(max_steps=100)
assert rollout1.names[-1] == "time"
torch.manual_seed(seed)
np.random.seed(seed)
env.set_seed(seed)
env.reset()
rollout2 = env.rollout(max_steps=100)
assert rollout2.names[-1] == "time"
assert_allclose_td(rollout1, rollout2)
torch.manual_seed(seed)
env.set_seed(seed + 10)
env.reset()
rollout3 = env.rollout(max_steps=100)
with pytest.raises(AssertionError):
assert_allclose_td(rollout1, rollout3)
env.close()
def test_rollout_set_truncated():
env = ContinuousActionVecMockEnv()
with pytest.raises(RuntimeError, match="set_truncated was set to True"):
env.rollout(max_steps=10, set_truncated=True, break_when_any_done=False)
env.add_truncated_keys()
r = env.rollout(max_steps=10, set_truncated=True, break_when_any_done=False)
assert r.shape == torch.Size([10])
assert r[..., -1]["next", "truncated"].all()
assert r[..., -1]["next", "done"].all()
@pytest.mark.parametrize("max_steps", [1, 5])
def test_rollouts_chaining(max_steps, batch_size=(4,), epochs=4):
# CountingEnv is done at max_steps + 1, so to emulate it being done at max_steps, we feed max_steps=max_steps - 1
env = CountingEnv(max_steps=max_steps - 1, batch_size=batch_size)
policy = CountingEnvCountPolicy(
action_spec=env.action_spec, action_key=env.action_key
)
input_td = env.reset()
for _ in range(epochs):
rollout_td = env.rollout(
max_steps=max_steps,
policy=policy,
auto_reset=False,
break_when_any_done=False,
tensordict=input_td,
)
assert (env.count == max_steps).all()
input_td = step_mdp(
rollout_td[..., -1],
keep_other=True,
exclude_action=False,
exclude_reward=True,
reward_keys=env.reward_keys,
action_keys=env.action_keys,
done_keys=env.done_keys,
)
@pytest.mark.parametrize("device", get_default_devices())
def test_rollout_predictability(device):
env = MockSerialEnv(device=device)
env.set_seed(100)
first = 100 % 17
policy = Actor(torch.nn.Linear(1, 1, bias=False)).to(device)
for p in policy.parameters():
p.data.fill_(1.0)
td_out = env.rollout(policy=policy, max_steps=200)
assert (
torch.arange(first, first + 100, device=device)
== td_out.get("observation").squeeze()
).all()
assert (
torch.arange(first + 1, first + 101, device=device)
== td_out.get(("next", "observation")).squeeze()
).all()
assert (
torch.arange(first + 1, first + 101, device=device)
== td_out.get(("next", "reward")).squeeze()
).all()
assert (
torch.arange(first, first + 100, device=device)
== td_out.get("action").squeeze()
).all()
# Check that the "terminated" key is filled in automatically if only the "done"
# key is provided in `_step`.
def test_done_key_completion_done():
class DoneEnv(CountingEnv):
def _step(
self,
tensordict: TensorDictBase,
) -> TensorDictBase:
self.count += 1
tensordict = TensorDict(
source={
"observation": self.count.clone(),
"done": self.count > self.max_steps,
"reward": torch.zeros_like(self.count, dtype=torch.float),
},
batch_size=self.batch_size,
device=self.device,
)
return tensordict
env = DoneEnv(max_steps=torch.tensor([[0], [1]]), batch_size=(2,))
td = env.reset()
env.rand_action(td)
td = env.step(td)
assert torch.equal(td[("next", "done")], torch.tensor([[True], [False]]))
assert torch.equal(td[("next", "terminated")], torch.tensor([[True], [False]]))
# Check that the "done" key is filled in automatically if only the "terminated"
# key is provided in `_step`.
def test_done_key_completion_terminated():
class TerminatedEnv(CountingEnv):
def _step(
self,
tensordict: TensorDictBase,
) -> TensorDictBase:
self.count += 1
tensordict = TensorDict(
source={
"observation": self.count.clone(),
"terminated": self.count > self.max_steps,
"reward": torch.zeros_like(self.count, dtype=torch.float),
},
batch_size=self.batch_size,
device=self.device,
)
return tensordict
env = TerminatedEnv(max_steps=torch.tensor([[0], [1]]), batch_size=(2,))
td = env.reset()
env.rand_action(td)
td = env.step(td)
assert torch.equal(td[("next", "done")], torch.tensor([[True], [False]]))
assert torch.equal(td[("next", "terminated")], torch.tensor([[True], [False]]))
@pytest.mark.skipif(not _has_gym, reason="no gym")
@pytest.mark.parametrize("env_name", [PENDULUM_VERSIONED])
@pytest.mark.parametrize("frame_skip", [1])
@pytest.mark.parametrize("truncated_key", ["truncated", "done"])
@pytest.mark.parametrize("parallel", [False, True])
def test_rollout_reset(
env_name, frame_skip, parallel, truncated_key, maybe_fork_ParallelEnv, seed=0
):
env_name = env_name()
envs = []
for horizon in [20, 30, 40]:
envs.append(
lambda horizon=horizon: TransformedEnv(
GymEnv(env_name, frame_skip=frame_skip),
StepCounter(horizon, truncated_key=truncated_key),
)
)
if parallel:
env = maybe_fork_ParallelEnv(3, envs)
else:
env = SerialEnv(3, envs)
env.set_seed(100)
out = env.rollout(100, break_when_any_done=False)
assert out.names[-1] == "time"
assert out.shape == torch.Size([3, 100])
assert (
out[..., -1]["step_count"].squeeze().cpu() == torch.tensor([19, 9, 19])
).all()
assert (
out[..., -1]["next", "step_count"].squeeze().cpu() == torch.tensor([20, 10, 20])
).all()
assert (
out["next", truncated_key].squeeze().sum(-1) == torch.tensor([5, 3, 2])
).all()
class TestModelBasedEnvBase:
@staticmethod
def world_model():
return WorldModelWrapper(
SafeModule(
ActionObsMergeLinear(5, 4),
in_keys=["hidden_observation", "action"],
out_keys=["hidden_observation"],
),
SafeModule(
nn.Linear(4, 1),
in_keys=["hidden_observation"],
out_keys=["reward"],
),
)
@pytest.mark.parametrize("device", get_default_devices())
def test_mb_rollout(self, device, seed=0):
torch.manual_seed(seed)
np.random.seed(seed)
world_model = self.world_model()
mb_env = DummyModelBasedEnvBase(
world_model, device=device, batch_size=torch.Size([10])
)
check_env_specs(mb_env)
rollout = mb_env.rollout(max_steps=100)
expected_keys = {
("next", key)
for key in (*mb_env.observation_spec.keys(), "reward", "done", "terminated")
}
expected_keys = expected_keys.union(
set(mb_env.input_spec["full_action_spec"].keys())
)
expected_keys = expected_keys.union(
set(mb_env.input_spec["full_state_spec"].keys())
)
expected_keys = expected_keys.union({"done", "terminated", "next"})
assert set(rollout.keys(True)) == expected_keys
assert rollout[("next", "hidden_observation")].shape == (10, 100, 4)
@pytest.mark.parametrize("device", get_default_devices())
def test_mb_env_batch_lock(self, device, seed=0):
torch.manual_seed(seed)
np.random.seed(seed)
world_model = WorldModelWrapper(
SafeModule(
ActionObsMergeLinear(5, 4),
in_keys=["hidden_observation", "action"],
out_keys=["hidden_observation"],
),
SafeModule(
nn.Linear(4, 1),
in_keys=["hidden_observation"],
out_keys=["reward"],
),
)
mb_env = DummyModelBasedEnvBase(
world_model, device=device, batch_size=torch.Size([10])
)
assert not mb_env.batch_locked
with pytest.raises(RuntimeError, match="batch_locked is a read-only property"):
mb_env.batch_locked = False
td = mb_env.reset()
td["action"] = mb_env.action_spec.rand()
td_expanded = td.unsqueeze(-1).expand(10, 2).reshape(-1).to_tensordict()
mb_env.step(td)
with pytest.raises(
RuntimeError,
match=re.escape("Expected a tensordict with shape==env.batch_size"),
):
mb_env.step(td_expanded)
mb_env = DummyModelBasedEnvBase(
world_model, device=device, batch_size=torch.Size([])
)
assert not mb_env.batch_locked
with pytest.raises(RuntimeError, match="batch_locked is a read-only property"):
mb_env.batch_locked = False
td = mb_env.reset()
td["action"] = mb_env.action_spec.rand()
td_expanded = td.expand(2)
mb_env.step(td)
# we should be able to do a step with a tensordict that has been expended
mb_env.step(td_expanded)
class TestParallel:
@pytest.mark.skipif(
not torch.cuda.device_count(), reason="No cuda device detected."
)
@pytest.mark.parametrize("parallel", [True, False])
@pytest.mark.parametrize("hetero", [True, False])
@pytest.mark.parametrize("pdevice", [None, "cpu", "cuda"])
@pytest.mark.parametrize("edevice", ["cpu", "cuda"])
@pytest.mark.parametrize("bwad", [True, False])
def test_parallel_devices(
self, parallel, hetero, pdevice, edevice, bwad, maybe_fork_ParallelEnv
):
if parallel:
cls = maybe_fork_ParallelEnv
else:
cls = SerialEnv
if not hetero:
env = cls(
2, lambda: ContinuousActionVecMockEnv(device=edevice), device=pdevice
)
else:
env1 = lambda: ContinuousActionVecMockEnv(device=edevice)
env2 = lambda: TransformedEnv(ContinuousActionVecMockEnv(device=edevice))
env = cls(2, [env1, env2], device=pdevice)
r = env.rollout(2, break_when_any_done=bwad)
if pdevice is not None:
assert env.device.type == torch.device(pdevice).type
assert r.device.type == torch.device(pdevice).type
assert all(
item.device.type == torch.device(pdevice).type
for item in r.values(True, True)
)
else:
assert env.device.type == torch.device(edevice).type
assert r.device.type == torch.device(edevice).type
assert all(
item.device.type == torch.device(edevice).type
for item in r.values(True, True)
)
if parallel:
assert (
env.shared_tensordict_parent.device.type == torch.device(edevice).type
)
@pytest.mark.parametrize("start_method", [None, mp_ctx])
def test_serial_for_single(self, maybe_fork_ParallelEnv, start_method):
gc.collect()
env = ParallelEnv(
1,
ContinuousActionVecMockEnv,
serial_for_single=True,
mp_start_method=start_method,
)
assert isinstance(env, SerialEnv)
env = ParallelEnv(1, ContinuousActionVecMockEnv, mp_start_method=start_method)
assert isinstance(env, ParallelEnv)
env = ParallelEnv(
2,
ContinuousActionVecMockEnv,
serial_for_single=True,
mp_start_method=start_method,
)
assert isinstance(env, ParallelEnv)
@pytest.mark.parametrize("num_parallel_env", [1, 10])
@pytest.mark.parametrize("env_batch_size", [[], (32,), (32, 1)])
def test_env_with_batch_size(
self, num_parallel_env, env_batch_size, maybe_fork_ParallelEnv
):
env = MockBatchedLockedEnv(device="cpu", batch_size=torch.Size(env_batch_size))
env.set_seed(1)
parallel_env = maybe_fork_ParallelEnv(num_parallel_env, lambda: env)
assert parallel_env.batch_size == (num_parallel_env, *env_batch_size)
@pytest.mark.skipif(not _has_dmc, reason="no dm_control")
@pytest.mark.parametrize("env_task", ["stand,stand,stand", "stand,walk,stand"])
@pytest.mark.parametrize("share_individual_td", [True, False])
def test_multi_task_serial_parallel(
self, env_task, share_individual_td, maybe_fork_ParallelEnv
):
tasks = env_task.split(",")
if len(tasks) == 1:
single_task = True
def env_make():
return DMControlEnv("humanoid", tasks[0])
elif len(set(tasks)) == 1 and len(tasks) == 3:
single_task = True
env_make = [lambda: DMControlEnv("humanoid", tasks[0])] * 3
else:
single_task = False
env_make = [
lambda task=task: DMControlEnv("humanoid", task) for task in tasks
]
env_serial = SerialEnv(3, env_make, share_individual_td=share_individual_td)
env_serial.start()
assert env_serial._single_task is single_task
env_parallel = maybe_fork_ParallelEnv(
3, env_make, share_individual_td=share_individual_td
)
env_parallel.start()
assert env_parallel._single_task is single_task
env_serial.set_seed(0)
torch.manual_seed(0)
td_serial = env_serial.rollout(max_steps=50)
env_parallel.set_seed(0)
torch.manual_seed(0)
td_parallel = env_parallel.rollout(max_steps=50)
assert_allclose_td(td_serial, td_parallel)
@pytest.mark.skipif(not _has_dmc, reason="no dm_control")
def test_multitask(self, maybe_fork_ParallelEnv):
env1 = DMControlEnv("humanoid", "stand")
env1_obs_keys = list(env1.observation_spec.keys())
env2 = DMControlEnv("humanoid", "walk")
env2_obs_keys = list(env2.observation_spec.keys())
assert len(env1_obs_keys)
assert len(env2_obs_keys)
def env1_maker():
return TransformedEnv(
DMControlEnv("humanoid", "stand"),
Compose(
CatTensors(env1_obs_keys, "observation_stand", del_keys=False),
CatTensors(env1_obs_keys, "observation"),
DoubleToFloat(
in_keys=["observation_stand", "observation"],
in_keys_inv=["action"],
),
),
)
def env2_maker():
return TransformedEnv(
DMControlEnv("humanoid", "walk"),
Compose(
CatTensors(env2_obs_keys, "observation_walk", del_keys=False),
CatTensors(env2_obs_keys, "observation"),
DoubleToFloat(
in_keys=["observation_walk", "observation"],
in_keys_inv=["action"],
),
),
)
env = maybe_fork_ParallelEnv(2, [env1_maker, env2_maker])
# env = SerialEnv(2, [env1_maker, env2_maker])
assert not env._single_task
td = env.rollout(10, return_contiguous=False)
assert "observation_walk" not in td.keys()
assert "observation_walk" in td[1].keys()
assert "observation_walk" not in td[0].keys()
assert "observation_stand" in td[0].keys()
assert "observation_stand" not in td[1].keys()
assert "observation_walk" in td[:, 0][1].keys()
assert "observation_walk" not in td[:, 0][0].keys()
assert "observation_stand" in td[:, 0][0].keys()
assert "observation_stand" not in td[:, 0][1].keys()
@pytest.mark.skipif(not _has_gym, reason="no gym")
@pytest.mark.parametrize(
"env_name", [PENDULUM_VERSIONED, CARTPOLE_VERSIONED]
) # 1226: faster execution
@pytest.mark.parametrize("frame_skip", [4]) # 1226: faster execution
@pytest.mark.parametrize(
"transformed_in,transformed_out", [[True, True], [False, False]]
) # 1226: faster execution
def test_parallel_env(
self, env_name, frame_skip, transformed_in, transformed_out, T=10, N=3
):
env_name = env_name()
env_parallel, env_serial, _, env0 = _make_envs(
env_name,
frame_skip,
transformed_in=transformed_in,
transformed_out=transformed_out,
N=N,
)
td = TensorDict(source={"action": env0.action_spec.rand((N,))}, batch_size=[N])
td1 = env_parallel.step(td)
assert not td1.is_shared()
assert ("next", "done") in td1.keys(True)
assert ("next", "reward") in td1.keys(True)
with pytest.raises(RuntimeError):
# number of actions does not match number of workers
td = TensorDict(
source={"action": env0.action_spec.rand((N - 1,))},
batch_size=[N - 1],
)
_ = env_parallel.step(td)
td_reset = TensorDict(source=rand_reset(env_parallel), batch_size=[N])
env_parallel.reset(tensordict=td_reset)
# check that interruption occured because of max_steps or done
td = env_parallel.rollout(policy=None, max_steps=T)
assert td.shape == torch.Size([N, T]) or td.get(("next", "done")).sum(1).any()
env_parallel.close()
# env_serial.close() # never opened
env0.close()
@pytest.mark.skipif(not _has_gym, reason="no gym")
@pytest.mark.parametrize("env_name", [PENDULUM_VERSIONED])
@pytest.mark.parametrize("frame_skip", [4]) # 1226: faster execution
@pytest.mark.parametrize(
"transformed_in,transformed_out", [[True, True], [False, False]]
) # 1226: faster execution
def test_parallel_env_with_policy(
self,
env_name,
frame_skip,
transformed_in,
transformed_out,
T=10,
N=3,
):
env_name = env_name()
env_parallel, env_serial, _, env0 = _make_envs(
env_name,
frame_skip,
transformed_in=transformed_in,
transformed_out=transformed_out,
N=N,
)
policy = ActorCriticOperator(
SafeModule(
spec=None,
module=nn.LazyLinear(12),
in_keys=["observation"],
out_keys=["hidden"],
),
SafeModule(
spec=None,
module=nn.LazyLinear(env0.action_spec.shape[-1]),
in_keys=["hidden"],
out_keys=["action"],
),
ValueOperator(
module=MLP(out_features=1, num_cells=[]), in_keys=["hidden", "action"]
),
)
td = TensorDict(source={"action": env0.action_spec.rand((N,))}, batch_size=[N])
td1 = env_parallel.step(td)
assert not td1.is_shared()
assert ("next", "done") in td1.keys(True)
assert ("next", "reward") in td1.keys(True)
with pytest.raises(RuntimeError):
# number of actions does not match number of workers
td = TensorDict(
source={"action": env0.action_spec.rand((N - 1,))},
batch_size=[N - 1],
)
_ = env_parallel.step(td)
td_reset = TensorDict(source=rand_reset(env_parallel), batch_size=[N])
env_parallel.reset(tensordict=td_reset)
td = env_parallel.rollout(policy=policy, max_steps=T)
assert (
td.shape == torch.Size([N, T]) or td.get("done").sum(1).all()
), f"{td.shape}, {td.get('done').sum(1)}"
env_parallel.close()
# env_serial.close()
env0.close()
@pytest.mark.skipif(not torch.cuda.is_available(), reason="CUDA required")
@pytest.mark.parametrize("heterogeneous", [False, True])
def test_transform_env_transform_no_device(
self, heterogeneous, maybe_fork_ParallelEnv
):
# Tests non-regression on 1865
def make_env():
return TransformedEnv(
ContinuousActionVecMockEnv(), StepCounter(max_steps=3)
)
if heterogeneous:
make_envs = [EnvCreator(make_env), EnvCreator(make_env)]
else:
make_envs = make_env
penv = maybe_fork_ParallelEnv(2, make_envs)
r = penv.rollout(6, break_when_any_done=False)
assert r.shape == (2, 6)
try:
env = TransformedEnv(penv)
r = env.rollout(6, break_when_any_done=False)
assert r.shape == (2, 6)
finally:
penv.close()
@pytest.mark.skipif(not _has_gym, reason="no gym")
@pytest.mark.parametrize(
"env_name",
[PENDULUM_VERSIONED],
) # PONG_VERSIONED]) # 1226: efficiency
@pytest.mark.parametrize("frame_skip", [4])
@pytest.mark.parametrize(
"transformed_in,transformed_out", [[True, True], [False, False]]
) # 1226: effociency
@pytest.mark.parametrize("static_seed", [False, True])
def test_parallel_env_seed(
self, env_name, frame_skip, transformed_in, transformed_out, static_seed
):
env_name = env_name()
env_parallel, env_serial, _, _ = _make_envs(
env_name, frame_skip, transformed_in, transformed_out, 5
)
out_seed_serial = env_serial.set_seed(0, static_seed=static_seed)
if static_seed:
assert out_seed_serial == 0
td0_serial = env_serial.reset()
torch.manual_seed(0)
td_serial = env_serial.rollout(
max_steps=10, auto_reset=False, tensordict=td0_serial
).contiguous()
key = "pixels" if "pixels" in td_serial.keys() else "observation"
torch.testing.assert_close(
td_serial[:, 0].get(("next", key)), td_serial[:, 1].get(key)
)
out_seed_parallel = env_parallel.set_seed(0, static_seed=static_seed)
if static_seed:
assert out_seed_serial == 0
td0_parallel = env_parallel.reset()
torch.manual_seed(0)
assert out_seed_parallel == out_seed_serial
td_parallel = env_parallel.rollout(
max_steps=10, auto_reset=False, tensordict=td0_parallel
).contiguous()
torch.testing.assert_close(
td_parallel[:, :-1].get(("next", key)), td_parallel[:, 1:].get(key)
)
assert_allclose_td(td0_serial, td0_parallel)
assert_allclose_td(td_serial[:, 0], td_parallel[:, 0]) # first step
assert_allclose_td(td_serial[:, 1], td_parallel[:, 1]) # second step
assert_allclose_td(td_serial, td_parallel)
env_parallel.close()
env_serial.close()
@pytest.mark.skipif(not _has_gym, reason="no gym")
def test_parallel_env_shutdown(self, maybe_fork_ParallelEnv):
env_make = EnvCreator(lambda: GymEnv(PENDULUM_VERSIONED()))
env = maybe_fork_ParallelEnv(4, env_make)
env.reset()
assert not env.is_closed
env.rand_step()
assert not env.is_closed
env.close()
assert env.is_closed
env.reset()
assert not env.is_closed
env.close()
@pytest.mark.parametrize("parallel", [True, False])
def test_parallel_env_custom_method(self, parallel, maybe_fork_ParallelEnv):
# define env
if parallel:
env = maybe_fork_ParallelEnv(2, lambda: DiscreteActionVecMockEnv())
else:
env = SerialEnv(2, lambda: DiscreteActionVecMockEnv())
# we must start the environment first
env.reset()
assert all(result == 0 for result in env.custom_fun())
assert all(result == 1 for result in env.custom_attr)
assert all(result == 2 for result in env.custom_prop) # to be fixed
env.close()
@pytest.mark.skipif(not torch.cuda.device_count(), reason="no cuda to test on")
@pytest.mark.skipif(not _has_gym, reason="no gym")
@pytest.mark.parametrize("frame_skip", [4])
@pytest.mark.parametrize("device", [0])
@pytest.mark.parametrize(
"env_name", [PENDULUM_VERSIONED]
) # 1226: Skip PONG for efficiency
@pytest.mark.parametrize(
"transformed_in,transformed_out,open_before",
[ # 1226: efficiency
[True, True, True],
[True, True, False],
[False, False, True],
],
)
def test_parallel_env_cast(
self,
env_name,
frame_skip,
transformed_in,
transformed_out,
device,
open_before,
N=3,
):
env_name = env_name()
# tests casting to device
env_parallel, env_serial, _, env0 = _make_envs(
env_name,
frame_skip,
transformed_in=transformed_in,
transformed_out=transformed_out,
N=N,
)
if open_before:
td_cpu = env0.rollout(max_steps=10)
assert td_cpu.device == torch.device("cpu")
env0 = env0.to(device)
assert env0.observation_spec.device == torch.device(device)
assert env0.action_spec.device == torch.device(device)
assert env0.reward_spec.device == torch.device(device)
assert env0.device == torch.device(device)
td_device = env0.reset()
assert td_device.device == torch.device(device), env0
td_device = env0.rand_step()
assert td_device.device == torch.device(device), env0
td_device = env0.rollout(max_steps=10)
assert td_device.device == torch.device(device), env0
if open_before:
td_cpu = env_serial.rollout(max_steps=10)
assert td_cpu.device == torch.device("cpu")
observation_spec = env_serial.observation_spec.clone()
done_spec = env_serial.done_spec.clone()
reward_spec = env_serial.reward_spec.clone()
action_spec = env_serial.action_spec.clone()
state_spec = env_serial.state_spec.clone()
env_serial = env_serial.to(device)
assert env_serial.observation_spec.device == torch.device(device)
assert env_serial.action_spec.device == torch.device(device)
assert env_serial.reward_spec.device == torch.device(device)
assert env_serial.device == torch.device(device)
assert env_serial.observation_spec == observation_spec.to(device)
assert env_serial.action_spec == action_spec.to(device)
assert env_serial.reward_spec == reward_spec.to(device)
assert env_serial.done_spec == done_spec.to(device)
assert env_serial.state_spec == state_spec.to(device)
td_device = env_serial.reset()
assert td_device.device == torch.device(device), env_serial
td_device = env_serial.rand_step()
assert td_device.device == torch.device(device), env_serial
td_device = env_serial.rollout(max_steps=10)
assert td_device.device == torch.device(device), env_serial
if open_before:
td_cpu = env_parallel.rollout(max_steps=10)
assert td_cpu.device == torch.device("cpu")
observation_spec = env_parallel.observation_spec.clone()
done_spec = env_parallel.done_spec.clone()
reward_spec = env_parallel.reward_spec.clone()
action_spec = env_parallel.action_spec.clone()
state_spec = env_parallel.state_spec.clone()
env_parallel = env_parallel.to(device)
assert env_parallel.observation_spec.device == torch.device(device)
assert env_parallel.action_spec.device == torch.device(device)
assert env_parallel.reward_spec.device == torch.device(device)
assert env_parallel.device == torch.device(device)
assert env_parallel.observation_spec == observation_spec.to(device)
assert env_parallel.action_spec == action_spec.to(device)
assert env_parallel.reward_spec == reward_spec.to(device)
assert env_parallel.done_spec == done_spec.to(device)
assert env_parallel.state_spec == state_spec.to(device)
td_device = env_parallel.reset()
assert td_device.device == torch.device(device), env_parallel
td_device = env_parallel.rand_step()
assert td_device.device == torch.device(device), env_parallel
td_device = env_parallel.rollout(max_steps=10)
assert td_device.device == torch.device(device), env_parallel
env_parallel.close()
env_serial.close()
env0.close()
@pytest.mark.skipif(not _has_gym, reason="no gym")
@pytest.mark.skipif(not torch.cuda.device_count(), reason="no cuda device detected")
@pytest.mark.parametrize("frame_skip", [4])
@pytest.mark.parametrize("device", [0])
@pytest.mark.parametrize("env_name", [PENDULUM_VERSIONED]) # 1226: efficiency
@pytest.mark.parametrize(
"transformed_in,transformed_out",
[ # 1226
[True, True],
[False, False],
],
)
def test_parallel_env_device(
self, env_name, frame_skip, transformed_in, transformed_out, device
):
env_name = env_name()
# tests creation on device
torch.manual_seed(0)
N = 3
env_parallel, env_serial, _, env0 = _make_envs(