forked from pytorch/rl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_distributed.py
554 lines (499 loc) · 16.9 KB
/
test_distributed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
Contains distributed tests which are expected to be a considerable burden for the CI
====================================================================================
"""
import abc
import argparse
import os
import sys
import time
import pytest
from tensordict.nn import TensorDictModuleBase
from torchrl._utils import logger as torchrl_logger
try:
import ray
_has_ray = True
RAY_ERR = None
except ModuleNotFoundError as err:
_has_ray = False
RAY_ERR = err
import torch
from mocking_classes import ContinuousActionVecMockEnv, CountingEnv
from torch import multiprocessing as mp, nn
from torchrl.collectors.collectors import (
MultiaSyncDataCollector,
MultiSyncDataCollector,
SyncDataCollector,
)
from torchrl.collectors.distributed import (
DistributedDataCollector,
DistributedSyncDataCollector,
RayCollector,
RPCDataCollector,
)
from torchrl.collectors.distributed.ray import DEFAULT_RAY_INIT_CONFIG
from torchrl.envs.utils import RandomPolicy
TIMEOUT = 200
if sys.platform.startswith("win"):
pytest.skip("skipping windows tests in windows", allow_module_level=True)
class CountingPolicy(TensorDictModuleBase):
"""A policy for counting env.
Returns a step of 1 by default but weights can be adapted.
"""
def __init__(self):
weight = 1.0
super().__init__()
self.weight = nn.Parameter(torch.tensor(weight))
self.in_keys = []
self.out_keys = ["action"]
def forward(self, tensordict):
tensordict.set("action", self.weight.expand(tensordict.shape).clone())
return tensordict
class DistributedCollectorBase:
@classmethod
@abc.abstractmethod
def distributed_class(self) -> type:
raise ImportError
@classmethod
@abc.abstractmethod
def distributed_kwargs(self) -> dict:
raise ImportError
@classmethod
@abc.abstractmethod
def _start_worker(cls):
raise NotImplementedError
@classmethod
def _test_distributed_collector_basic(cls, queue, frames_per_batch):
cls._start_worker()
env = ContinuousActionVecMockEnv
policy = RandomPolicy(env().action_spec)
torchrl_logger.info("creating collector")
collector = cls.distributed_class()(
[env] * 2,
policy,
total_frames=1000,
frames_per_batch=frames_per_batch,
**cls.distributed_kwargs(),
)
total = 0
torchrl_logger.info("getting data...")
for data in collector:
total += data.numel()
assert data.numel() == frames_per_batch
assert data.names[-1] == "time"
collector.shutdown()
assert total == 1000
queue.put("passed")
@pytest.mark.parametrize("frames_per_batch", [50, 100])
def test_distributed_collector_basic(self, frames_per_batch):
"""Basic functionality test."""
queue = mp.Queue(1)
proc = mp.Process(
target=self._test_distributed_collector_basic,
args=(queue, frames_per_batch),
)
proc.start()
try:
out = queue.get(timeout=TIMEOUT)
assert out == "passed"
finally:
proc.join(10)
if proc.is_alive():
proc.terminate()
queue.close()
@classmethod
def _test_distributed_collector_mult(cls, queue, frames_per_batch):
cls._start_worker()
env = ContinuousActionVecMockEnv
policy = RandomPolicy(env().action_spec)
collector = cls.distributed_class()(
[env] * 2,
policy,
total_frames=1000,
frames_per_batch=frames_per_batch,
**cls.distributed_kwargs(),
)
total = 0
for data in collector:
total += data.numel()
assert data.numel() == frames_per_batch
collector.shutdown()
assert total == -frames_per_batch * (1000 // -frames_per_batch)
queue.put("passed")
def test_distributed_collector_mult(self, frames_per_batch=200):
"""Testing multiple nodes."""
time.sleep(1.0)
queue = mp.Queue(1)
proc = mp.Process(
target=self._test_distributed_collector_mult,
args=(queue, frames_per_batch),
)
proc.start()
try:
out = queue.get(timeout=TIMEOUT)
assert out == "passed"
finally:
proc.join(10)
if proc.is_alive():
proc.terminate()
queue.close()
@classmethod
def _test_distributed_collector_sync(cls, queue, sync):
frames_per_batch = 50
env = ContinuousActionVecMockEnv
policy = RandomPolicy(env().action_spec)
collector = cls.distributed_class()(
[env] * 2,
policy,
total_frames=200,
frames_per_batch=frames_per_batch,
sync=sync,
**cls.distributed_kwargs(),
)
total = 0
for data in collector:
total += data.numel()
assert data.numel() == frames_per_batch
collector.shutdown()
assert total == 200
queue.put("passed")
@pytest.mark.parametrize("sync", [False, True])
def test_distributed_collector_sync(self, sync):
"""Testing sync and async."""
queue = mp.Queue(1)
proc = mp.Process(
target=TestDistributedCollector._test_distributed_collector_sync,
args=(queue, sync),
)
proc.start()
try:
out = queue.get(timeout=TIMEOUT)
assert out == "passed"
finally:
proc.join(10)
if proc.is_alive():
proc.terminate()
queue.close()
@classmethod
def _test_distributed_collector_class(cls, queue, collector_class):
frames_per_batch = 50
env = ContinuousActionVecMockEnv
policy = RandomPolicy(env().action_spec)
collector = cls.distributed_class()(
[env] * 2,
policy,
collector_class=collector_class,
total_frames=200,
frames_per_batch=frames_per_batch,
**cls.distributed_kwargs(),
)
total = 0
for data in collector:
total += data.numel()
assert data.numel() == frames_per_batch
collector.shutdown()
assert total == 200
queue.put("passed")
@pytest.mark.parametrize(
"collector_class",
[
MultiSyncDataCollector,
MultiaSyncDataCollector,
SyncDataCollector,
],
)
def test_distributed_collector_class(self, collector_class):
"""Testing various collector classes to be used in nodes."""
queue = mp.Queue(1)
proc = mp.Process(
target=self._test_distributed_collector_class,
args=(queue, collector_class),
)
proc.start()
try:
out = queue.get(timeout=TIMEOUT)
assert out == "passed"
finally:
proc.join(10)
if proc.is_alive():
proc.terminate()
queue.close()
@classmethod
def _test_distributed_collector_updatepolicy(cls, queue, collector_class, sync):
frames_per_batch = 50
total_frames = 300
env = CountingEnv
policy = CountingPolicy()
if collector_class is MultiaSyncDataCollector:
# otherwise we may collect data from a collector that has not yet been
# updated
n_collectors = 1
else:
n_collectors = 2
collector = cls.distributed_class()(
[env] * n_collectors,
policy,
collector_class=collector_class,
total_frames=total_frames,
frames_per_batch=frames_per_batch,
sync=sync,
**cls.distributed_kwargs(),
)
total = 0
first_batch = None
last_batch = None
for i, data in enumerate(collector):
total += data.numel()
assert data.numel() == frames_per_batch
if i == 0:
first_batch = data
policy.weight.data += 1
collector.update_policy_weights_()
elif total == total_frames - frames_per_batch:
last_batch = data
assert (first_batch["action"] == 1).all(), first_batch["action"]
assert (last_batch["action"] == 2).all(), last_batch["action"]
collector.shutdown()
assert total == total_frames
queue.put("passed")
@pytest.mark.parametrize(
"collector_class",
[
SyncDataCollector,
MultiSyncDataCollector,
MultiaSyncDataCollector,
],
)
@pytest.mark.parametrize("sync", [False, True])
def test_distributed_collector_updatepolicy(self, collector_class, sync):
"""Testing various collector classes to be used in nodes."""
queue = mp.Queue(1)
proc = mp.Process(
target=self._test_distributed_collector_updatepolicy,
args=(queue, collector_class, sync),
)
proc.start()
try:
out = queue.get(timeout=TIMEOUT)
assert out == "passed"
finally:
proc.join(10)
if proc.is_alive():
proc.terminate()
queue.close()
class TestDistributedCollector(DistributedCollectorBase):
@classmethod
def distributed_class(cls) -> type:
return DistributedDataCollector
@classmethod
def distributed_kwargs(cls) -> dict:
return {"launcher": "mp", "tcp_port": "4324"}
@classmethod
def _start_worker(cls):
pass
class TestRPCCollector(DistributedCollectorBase):
@classmethod
def distributed_class(cls) -> type:
return RPCDataCollector
@classmethod
def distributed_kwargs(cls) -> dict:
return {"launcher": "mp", "tcp_port": "4324"}
@classmethod
def _start_worker(cls):
os.environ["RCP_IDLE_TIMEOUT"] = "10"
class TestSyncCollector(DistributedCollectorBase):
@classmethod
def distributed_class(cls) -> type:
return DistributedSyncDataCollector
@classmethod
def distributed_kwargs(cls) -> dict:
return {"launcher": "mp", "tcp_port": "4324"}
@classmethod
def _start_worker(cls):
os.environ["RCP_IDLE_TIMEOUT"] = "10"
def test_distributed_collector_sync(self, *args):
raise pytest.skip("skipping as only sync is supported")
@classmethod
def _test_distributed_collector_updatepolicy(
cls, queue, collector_class, update_interval
):
frames_per_batch = 50
total_frames = 300
env = CountingEnv
policy = CountingPolicy()
collector = cls.distributed_class()(
[env] * 2,
policy,
collector_class=collector_class,
total_frames=total_frames,
frames_per_batch=frames_per_batch,
update_interval=update_interval,
**cls.distributed_kwargs(),
)
total = 0
first_batch = None
last_batch = None
for i, data in enumerate(collector):
total += data.numel()
assert data.numel() == frames_per_batch
if i == 0:
first_batch = data
policy.weight.data += 1
elif total == total_frames - frames_per_batch:
last_batch = data
assert (first_batch["action"] == 1).all(), first_batch["action"]
if update_interval == 1:
assert (last_batch["action"] == 2).all(), last_batch["action"]
else:
assert (last_batch["action"] == 1).all(), last_batch["action"]
collector.shutdown()
assert total == total_frames
queue.put("passed")
@pytest.mark.parametrize(
"collector_class",
[
SyncDataCollector,
MultiSyncDataCollector,
MultiaSyncDataCollector,
],
)
@pytest.mark.parametrize("update_interval", [1_000_000, 1])
def test_distributed_collector_updatepolicy(self, collector_class, update_interval):
"""Testing various collector classes to be used in nodes."""
queue = mp.Queue(1)
proc = mp.Process(
target=self._test_distributed_collector_updatepolicy,
args=(queue, collector_class, update_interval),
)
proc.start()
try:
out = queue.get(timeout=TIMEOUT)
assert out == "passed"
finally:
proc.join(10)
if proc.is_alive():
proc.terminate()
queue.close()
@pytest.mark.skipif(not _has_ray, reason=f"Ray not found (error: {RAY_ERR})")
class TestRayCollector(DistributedCollectorBase):
"""A testing distributed data collector class that runs tests without using a Queue,
to avoid potential deadlocks when combining Ray and multiprocessing.
"""
@classmethod
def distributed_class(cls) -> type:
return RayCollector
@classmethod
def distributed_kwargs(cls) -> dict:
ray.shutdown() # make sure ray is not running
ray_init_config = DEFAULT_RAY_INIT_CONFIG
ray_init_config["runtime_env"] = {
"working_dir": os.path.dirname(__file__),
"env_vars": {"PYTHONPATH": os.path.dirname(__file__)},
"pip": ["ray"],
} # for ray workers
remote_configs = {
"num_cpus": 1,
"num_gpus": 0.0,
"memory": 1024**2,
}
return {"ray_init_config": ray_init_config, "remote_configs": remote_configs}
@classmethod
def _start_worker(cls):
pass
@pytest.mark.parametrize("sync", [False, True])
def test_distributed_collector_sync(self, sync, frames_per_batch=200):
frames_per_batch = 50
env = ContinuousActionVecMockEnv
policy = RandomPolicy(env().action_spec)
collector = self.distributed_class()(
[env] * 2,
policy,
total_frames=200,
frames_per_batch=frames_per_batch,
sync=sync,
**self.distributed_kwargs(),
)
total = 0
for data in collector:
total += data.numel()
assert data.numel() == frames_per_batch
collector.shutdown()
assert total == 200
@pytest.mark.parametrize(
"collector_class",
[
MultiSyncDataCollector,
MultiaSyncDataCollector,
SyncDataCollector,
],
)
def test_distributed_collector_class(self, collector_class):
frames_per_batch = 50
env = ContinuousActionVecMockEnv
policy = RandomPolicy(env().action_spec)
collector = self.distributed_class()(
[env] * 2,
policy,
collector_class=collector_class,
total_frames=200,
frames_per_batch=frames_per_batch,
**self.distributed_kwargs(),
)
total = 0
for data in collector:
total += data.numel()
assert data.numel() == frames_per_batch
collector.shutdown()
assert total == 200
@pytest.mark.parametrize(
"collector_class",
[
SyncDataCollector,
MultiSyncDataCollector,
MultiaSyncDataCollector,
],
)
@pytest.mark.parametrize("sync", [False, True])
def test_distributed_collector_updatepolicy(self, collector_class, sync):
frames_per_batch = 50
total_frames = 300
env = CountingEnv
policy = CountingPolicy()
if collector_class is MultiaSyncDataCollector:
# otherwise we may collect data from a collector that has not yet been
# updated
n_collectors = 1
else:
n_collectors = 2
collector = self.distributed_class()(
[env] * n_collectors,
policy,
collector_class=collector_class,
total_frames=total_frames,
frames_per_batch=frames_per_batch,
sync=sync,
**self.distributed_kwargs(),
)
total = 0
first_batch = None
last_batch = None
for i, data in enumerate(collector):
total += data.numel()
assert data.numel() == frames_per_batch
if i == 0:
first_batch = data
policy.weight.data += 1
collector.update_policy_weights_()
elif total == total_frames - frames_per_batch:
last_batch = data
assert (first_batch["action"] == 1).all(), first_batch["action"]
assert (last_batch["action"] == 2).all(), last_batch["action"]
collector.shutdown()
assert total == total_frames
if __name__ == "__main__":
args, unknown = argparse.ArgumentParser().parse_known_args()
pytest.main([__file__, "--capture", "no", "--exitfirst"] + unknown)