forked from pytorch/rl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
404 lines (345 loc) · 13.1 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import contextlib
import logging
from contextlib import nullcontext
from copy import deepcopy
import torch
import torch._dynamo
from hydra.utils import to_absolute_path
from models.reward import init_reward_model
from tensordict import TensorDict
from torch.optim.lr_scheduler import CosineAnnealingLR
from torchrl.data import (
LazyTensorStorage,
RolloutFromModel,
TensorDictReplayBuffer,
TensorStorage,
)
from torchrl.data.replay_buffers import SamplerWithoutReplacement
from torchrl.data.rlhf.dataset import get_dataloader
from torchrl.data.rlhf.prompt import PromptData
from torchrl.objectives import ClipPPOLoss
from torchrl.objectives.value import GAE
from torchrl.record.loggers import Logger
from transformers import GenerationConfig, GPT2Tokenizer
class TestPromptLogger:
def __init__(self, batch, reward_model, logger, episode_length):
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
tokenizer.pad_token = tokenizer.eos_token
test_rindex = batch.prompt_rindex[0]
test_prompt_ids = batch.input_ids[:1, :test_rindex]
test_label_ids = batch.input_ids[:1, test_rindex:]
test_prompt = tokenizer.decode(test_prompt_ids[0, :test_rindex].tolist())
test_label = tokenizer.decode(
test_label_ids[0, test_label_ids[0] != tokenizer.pad_token_id].tolist()
)
_, test_label_reward = reward_model(
input_ids=batch.input_ids[:1], attention_mask=batch.attention_mask[:1]
)
self.generation_config = GenerationConfig(
pad_token_id=tokenizer.pad_token_id, max_new_tokens=episode_length
)
self.test_prompt_ids = test_prompt_ids
self.reward_model = reward_model
self.tokenizer = tokenizer
self.test_label_reward = test_label_reward
self.test_rindex = test_rindex
self.test_prompt = test_prompt
self.test_label = test_label
self.logger = logger
def log(self, model):
response_ids = model.generate(
input_ids=self.test_prompt_ids, generation_config=self.generation_config
)
_, response_reward = self.reward_model(
input_ids=response_ids,
attention_mask=(response_ids != self.tokenizer.pad_token_id).to(
torch.int64
),
)
reward = (response_reward - self.test_label_reward).item()
response_ids = response_ids[0, self.test_rindex :]
response = self.tokenizer.decode(
response_ids[response_ids != self.tokenizer.eos_token_id].tolist()
)
string_to_write = (
f"Query:\n{self.test_prompt}\n"
f"Response:\n{response}\n"
f"Actual response:\n{self.test_label}\n"
f"{reward=:4.4f}\n"
f"====================================================\n"
)
self.logger.info(string_to_write)
class TrainLogger:
def __init__(self, size: int, log_interval: int, logger: Logger):
self.data = TensorDict({}, [size])
self.counter = 0
self.log_interval = log_interval
self.logger = logger
self.it = -1
def __call__(self, data):
done = data.get(("next", "done"))
td_done = data[done.view(data.shape)]
next_reward = td_done.get(("next", "reward_raw"))
next_kl = td_done.get(("next", "reward_kl"))
self.data[self.counter]["next_reward"] = next_reward.mean().cpu()
self.data[self.counter]["next_kl"] = next_kl.mean().cpu()
self.counter += 1
def aggregate(self):
result = {}
for key, item in self.data.items():
result[key] = item.mean()
self.aggregated_data = TensorDict(result, [])
def log(self):
self.it += 1
if self.it % self.log_interval == 0:
for key, item in self.aggregated_data.items():
self.logger.log_scalar(key, item)
class Evaluator:
def __init__(
self,
*,
reward_estimator,
model,
prompt_logger,
io_cfg,
val_reward_logger,
val_loader,
rlhf_out_dir,
always_save_checkpoint=False,
ctx=None,
logger=None,
):
self.reward_estimator = reward_estimator
self.model = model
self.prompt_logger = prompt_logger
self.io_cfg = io_cfg
self.eval_interval = io_cfg.eval_interval
self.log_interval = io_cfg.log_interval
self.eval_iters = io_cfg.eval_iters
if ctx is None:
ctx = contextlib.nullcontext()
self.ctx = ctx
self.val_reward_logger = val_reward_logger
self.val_loader = val_loader
self.always_save_checkpoint = always_save_checkpoint
self.rlhf_out_dir = rlhf_out_dir
self.logger = logger
self.best_val_reward = -float("inf")
self.it = 0
def maybe_evaluate(self):
self.it += 1
if self.it % self.eval_interval == 0:
with self.ctx:
val_reward = self.reward_estimator(self.model, self.val_loader)
self.prompt_logger.log(self.model)
self.val_reward_logger.info(f"VALID: {self.it=}: {val_reward=:.4f}")
self.logger.log_scalar("val_reward", val_reward, step=self.it)
# pbar.set_description(f"VALID: {it=}: {val_reward=:.4f}")
if val_reward > self.best_val_reward:
self.best_val_reward = val_reward
if self.always_save_checkpoint:
if self.it > 0:
self.val_reward_logger.info(
f"saving checkpoint to {self.rlhf_out_dir}"
)
self.model.save_pretrained(self.rlhf_out_dir)
class RewardEstimator:
"""Create a class to estimate the reward via sampling.
This class exposes a call method which, given a model and a dataloader, will
perform multiple rollouts using the model and data sampled from the dataloader then
average the accumulated rewards.
For debugging purposes, we also generate responses to a fixed prompt so that the
quality of the model can be visually assessed during training.
"""
def __init__(self, eval_iters, episode_length, reward_model, ref_model):
"""
Args:
eval_iters (int): number of batches on which we would like to estimate reward
episode_length (int): max number of generated new tokens
reward_model (GPT2RewardModel): reward model
ref_model (GPT2LMHeadModel): original transformer model that it is used to
correctly compute kl component of reward.
"""
self.ref_model = ref_model
self.reward_model = reward_model
self.eval_iters = eval_iters
self.episode_length = episode_length
@torch.no_grad()
def __call__(self, model, dataloader):
rollout_from_model = RolloutFromModel(
model,
self.ref_model,
self.reward_model,
kl_coef=0, # disable KL for evaluation
max_new_tokens=self.episode_length,
)
rewards = torch.zeros(self.eval_iters)
for k in range(self.eval_iters):
batch = next(dataloader)
td = rollout_from_model.rollout_from_data(batch)
rewards[k] = td.get(("next", "reward")).sum(dim=1).mean().item()
test_reward = rewards.mean()
return test_reward
def resolve_name_or_path(name_or_path):
"""Hydra changes the working directory, so we need to absolutify paths."""
if not name_or_path:
return None
if name_or_path.startswith("./") or name_or_path.startswith("/"):
return to_absolute_path(name_or_path)
return name_or_path
def get_file_logger(name, filename, level=logging.DEBUG):
"""
Set up logger that will log to the given filename.
"""
logger = logging.getLogger(name)
handler = logging.FileHandler(filename)
handler.setFormatter(
# logging.Formatter("%(asctime)s, %(name)s %(levelname)s %(message)s")
logging.Formatter("%(asctime)s - %(message)s")
)
logger.addHandler(handler)
logger.setLevel(level)
return logger
def setup(sys_cfg):
"""
Set manual seed, configure backend and autocasting.
"""
device = sys_cfg.device
dtype = sys_cfg.dtype
torch.manual_seed(1337)
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
torch._dynamo.config.cache_size_limit = 256
if "cuda" not in device:
return nullcontext()
return torch.amp.autocast(device_type="cuda", dtype=getattr(torch, dtype))
def flatten_td(td):
# our tensordict has shape [B, T] where B = batch_size and T = trajectory length
# some trajectories may have stopped (reached EOS) before generating T tokens
# this function truncates and concatenates the trajectories, resulting in a
# tensordict that has shape [N] where N <= B * T.
done = td["next", "done"]
mask = torch.zeros_like(done)
mask[..., 1:, :] = done[..., :-1, :] # shift by one
mask = ~mask.cumsum(-2).bool().squeeze()
return td[mask]
def make_evaluator(
ppo_cfg,
io_cfg,
model_cfg,
train_cfg,
val_prompt_loader,
model,
ref_model,
reward_model,
ctx,
logger,
):
query_logger = get_file_logger("query_logger", "rlhf_query_logger.log")
val_reward_logger = get_file_logger("val_reward_logger", "rlhf_valid_rewards.log")
episode_length = ppo_cfg.episode_length
rlhf_out_dir = model_cfg.out_dir
always_save_checkpoint = train_cfg.always_save_checkpoint
test_prompt = next(val_prompt_loader)
prompt_logger = TestPromptLogger(
batch=test_prompt,
reward_model=reward_model,
logger=query_logger,
episode_length=episode_length,
)
reward_estimator = RewardEstimator(
io_cfg.eval_iters, episode_length, reward_model, ref_model
)
evaluator = Evaluator(
reward_estimator=reward_estimator,
model=model,
prompt_logger=prompt_logger,
io_cfg=io_cfg,
val_reward_logger=val_reward_logger,
val_loader=val_prompt_loader,
rlhf_out_dir=rlhf_out_dir,
always_save_checkpoint=always_save_checkpoint,
ctx=ctx,
logger=logger,
)
return evaluator
def make_replay_buffer(ppo_cfg, data_cfg):
return TensorDictReplayBuffer(
storage=LazyTensorStorage(
ppo_cfg.episode_length * ppo_cfg.num_rollouts_per_epoch
),
batch_size=ppo_cfg.episode_length * data_cfg.batch_size,
sampler=SamplerWithoutReplacement(),
prefetch=10,
)
def get_prompt_loaders(data_cfg, sys_cfg):
train_prompt_loader = get_dataloader(
data_cfg.batch_size,
data_cfg.block_size,
PromptData,
sys_cfg.device,
dataset_name="CarperAI/openai_summarize_tldr",
split="train",
num_workers=data_cfg.num_workers,
)
val_prompt_loader = get_dataloader(
data_cfg.batch_size,
data_cfg.block_size,
PromptData,
sys_cfg.device,
dataset_name="CarperAI/openai_summarize_tldr",
split="valid",
num_workers=data_cfg.num_workers,
)
return train_prompt_loader, val_prompt_loader
def make_ref_model(model, sys_cfg):
device = sys_cfg.ref_device
ref_model = deepcopy(model).to(device)
ref_model.requires_grad_(False)
return ref_model
def freeze_layers(model):
layers = model.transformer.h
num_layers = len(layers)
num_unfrozen = int(0.3 * num_layers)
for layer in layers[:-num_unfrozen]:
layer.requires_grad_(False)
def make_reward_model(reward_model_cfg, sys_cfg):
device = sys_cfg.device
compile_model = sys_cfg.compile
reward_model = init_reward_model(
reward_model_path=resolve_name_or_path(reward_model_cfg.name_or_path),
device=device,
compile_model=compile_model,
)
reward_model.eval()
reward_model.requires_grad_(False)
return reward_model
def make_loss(actor, critic, critic_head):
advantage = GAE(
value_network=critic, gamma=0.99, lmbda=0.95, average_gae=True, shifted=True
)
loss_fn = ClipPPOLoss(actor, critic_head)
return loss_fn, advantage
def make_optimizer(train_cfg, loss_fn):
optimizer = torch.optim.AdamW(
[p for p in loss_fn.parameters() if p.requires_grad], **train_cfg.optimizer
)
scheduler = None
if train_cfg.decay_lr:
scheduler = CosineAnnealingLR(optimizer, **train_cfg.scheduler)
return optimizer, scheduler
def make_sub_replay_buffer(data, batch_size):
"""A zero-copy sub-replay buffer."""
# We expect some overhead due to the instantiation of the rb, storage and sampler
# but hopefully these shouldn't be as big as copying data.
# An optimized version of this would cache the rb, storage container and sampler and
# just rewire to the new data location.
storage = TensorStorage(data.exclude("index"))
rb = TensorDictReplayBuffer(
storage=storage, batch_size=batch_size, sampler=SamplerWithoutReplacement()
)
return rb