forked from pytorch/rl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_rlhf.py
178 lines (148 loc) · 5.98 KB
/
train_rlhf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import hydra
import torch
from models.actor_critic import init_actor_critic
from torchrl.data.rlhf.utils import AdaptiveKLController, RolloutFromModel
from torchrl.record.loggers import get_logger
from tqdm import tqdm
from utils import (
flatten_td,
freeze_layers,
get_prompt_loaders,
make_evaluator,
make_loss,
make_optimizer,
make_ref_model,
make_replay_buffer,
make_reward_model,
make_sub_replay_buffer,
resolve_name_or_path,
setup,
TrainLogger,
)
@hydra.main(version_base="1.1", config_path="config", config_name="train_rlhf")
def main(cfg):
# ============ Retrieve config ============ #
#############################################
# make path absolute
cfg.model.name_or_path = resolve_name_or_path(cfg.model.name_or_path)
# Get some constants: number of iters, grad clip...
batch_size = cfg.data.batch_size
num_rollouts_per_epoch = cfg.train.ppo.num_rollouts_per_epoch
collection_iters = num_rollouts_per_epoch // batch_size
grad_clip = cfg.train.grad_clip
max_epochs = cfg.train.max_epochs
ppo_batch_size = cfg.train.ppo.ppo_batch_size
ppo_num_epochs = cfg.train.ppo.ppo_num_epochs
device = cfg.sys.device
# ============ Instantiate utils ============ #
###############################################
ctx = setup(cfg.sys)
logger = get_logger(
logger_type=cfg.io.logger,
logger_name="./log",
experiment_name="torchrlhf-gpt2",
wandb_kwargs={
"config": dict(cfg),
"project": cfg.io.project_name,
"group": cfg.io.group_name,
},
)
# =============== Dataloaders =============== #
###############################################
# We use prompts to get generated data from the generative model
train_prompt_loader, val_prompt_loader = get_prompt_loaders(cfg.data, cfg.sys)
# ================= Models ================= #
##############################################
# Actor (gen model) - critic (value predictor)
actor, critic, critic_head, model = init_actor_critic(cfg.model, cfg.sys)
# Freeze initial model to use as ref
ref_model = make_ref_model(model, sys_cfg=cfg.sys)
# Freeze layers of the model -- can be customized
freeze_layers(model)
reward_model = make_reward_model(reward_model_cfg=cfg.reward_model, sys_cfg=cfg.sys)
# ================= Loss and optimizer ================= #
##########################################################
loss_fn, advantage = make_loss(actor, critic, critic_head)
optimizer, lr_scheduler = make_optimizer(cfg.train, loss_fn)
# ================= Replay buffer ================= #
#####################################################
rb = make_replay_buffer(cfg.train.ppo, cfg.data)
# ================= Data collector ================= #
######################################################
#
# Because we interact with HuggingFace's transformers models,
# using a Gym-like API (querying steps etc) introduces some
# extra code that we can spare.
#
kl_scheduler = AdaptiveKLController(init_kl_coef=0.1, target=6, horizon=10000)
rollout_from_model = RolloutFromModel(
model,
ref_model,
reward_model,
kl_scheduler=kl_scheduler,
num_steps=collection_iters,
)
# ================= Evaluation utils ================= #
########################################################
evaluator = make_evaluator(
ppo_cfg=cfg.train.ppo,
io_cfg=cfg.io,
model_cfg=cfg.model,
train_cfg=cfg.train,
val_prompt_loader=val_prompt_loader,
model=model,
ref_model=ref_model,
reward_model=reward_model,
ctx=ctx,
logger=logger,
)
# ================= Training loop ================= #
#####################################################
stats_logger = TrainLogger(
collection_iters, log_interval=cfg.io.log_interval, logger=logger
)
pbar = tqdm(total=max_epochs * collection_iters)
for _ in range(max_epochs):
# ----------------- 1. Collect data, fill replay buffer ----------------- #
# it's possible we didn't fill the replay buffer in the last iteration if
# generation stopped early, so we empty first before repopulating
rb.empty()
for _ in range(collection_iters):
batch = next(train_prompt_loader)
td = rollout_from_model.rollout_from_data(batch)
with torch.no_grad(), ctx:
# TODO: moving this to within epoch
advantage(td)
rb.extend(flatten_td(td))
stats_logger(td)
stats_logger.aggregate()
stats_logger.log()
rollout_from_model.step_scheduler()
# ----------------- 2. Feed model ----------------- #
for batch in rb:
rb_ppo = make_sub_replay_buffer(batch, batch_size=ppo_batch_size)
for _ in range(ppo_num_epochs): # PPO epochs
optimizer.zero_grad()
for minibatch in rb_ppo: # GO over RB
minibatch = minibatch.to(device, non_blocking=True)
with ctx:
loss_vals = loss_fn(minibatch)
loss_val = sum(
value
for key, value in loss_vals.items()
if key.startswith("loss")
)
loss_val.backward()
torch.nn.utils.clip_grad_norm_(loss_fn.parameters(), grad_clip)
optimizer.step()
if lr_scheduler is not None:
lr_scheduler.step()
pbar.update(1)
# ----------------- 3. Possibly evaluate ----------------- #
evaluator.maybe_evaluate()
if __name__ == "__main__":
main()