forked from pytorch/rl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_utils_internal.py
275 lines (221 loc) · 7 KB
/
_utils_internal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import contextlib
import os
import os.path
import time
from functools import wraps
# Get relative file path
# this returns relative path from current file.
import pytest
import torch
import torch.cuda
from torchrl._utils import implement_for, seed_generator
from torchrl.envs import ObservationNorm
from torchrl.envs.libs.gym import _has_gym, GymEnv
from torchrl.envs.transforms import (
Compose,
RewardClipping,
ToTensorImage,
TransformedEnv,
)
from torchrl.envs.vec_env import _has_envpool, MultiThreadedEnv, ParallelEnv, SerialEnv
# Specified for test_utils.py
__version__ = "0.3"
# Default versions of the environments.
CARTPOLE_VERSIONED = "CartPole-v1"
HALFCHEETAH_VERSIONED = "HalfCheetah-v4"
PENDULUM_VERSIONED = "Pendulum-v1"
PONG_VERSIONED = "ALE/Pong-v5"
@implement_for("gym", None, "0.21.0")
def _set_gym_environments(): # noqa: F811
global CARTPOLE_VERSIONED, HALFCHEETAH_VERSIONED, PENDULUM_VERSIONED, PONG_VERSIONED
CARTPOLE_VERSIONED = "CartPole-v0"
HALFCHEETAH_VERSIONED = "HalfCheetah-v2"
PENDULUM_VERSIONED = "Pendulum-v0"
PONG_VERSIONED = "Pong-v4"
@implement_for("gym", "0.21.0", None)
def _set_gym_environments(): # noqa: F811
global CARTPOLE_VERSIONED, HALFCHEETAH_VERSIONED, PENDULUM_VERSIONED, PONG_VERSIONED
CARTPOLE_VERSIONED = "CartPole-v1"
HALFCHEETAH_VERSIONED = "HalfCheetah-v4"
PENDULUM_VERSIONED = "Pendulum-v1"
PONG_VERSIONED = "ALE/Pong-v5"
if _has_gym:
_set_gym_environments()
def get_relative_path(curr_file, *path_components):
return os.path.join(os.path.dirname(curr_file), *path_components)
def get_available_devices():
devices = [torch.device("cpu")]
n_cuda = torch.cuda.device_count()
if n_cuda > 0:
for i in range(n_cuda):
devices += [torch.device(f"cuda:{i}")]
return devices
def generate_seeds(seed, repeat):
seeds = [seed]
for _ in range(repeat - 1):
seed = seed_generator(seed)
seeds.append(seed)
return seeds
# Decorator to retry upon certain Exceptions.
def retry(ExceptionToCheck, tries=3, delay=3, skip_after_retries=False):
def deco_retry(f):
@wraps(f)
def f_retry(*args, **kwargs):
mtries, mdelay = tries, delay
while mtries > 1:
try:
return f(*args, **kwargs)
except ExceptionToCheck as e:
msg = "%s, Retrying in %d seconds..." % (str(e), mdelay)
print(msg)
time.sleep(mdelay)
mtries -= 1
try:
return f(*args, **kwargs)
except ExceptionToCheck as e:
if skip_after_retries:
raise pytest.skip(
f"Skipping after {tries} consecutive {str(e)}"
) from e
else:
raise e
return f_retry # true decorator
return deco_retry
@pytest.fixture
def dtype_fixture():
dtype = torch.get_default_dtype()
torch.set_default_dtype(torch.double)
yield dtype
torch.set_default_dtype(dtype)
@contextlib.contextmanager
def set_global_var(module, var_name, value):
old_value = getattr(module, var_name)
setattr(module, var_name, value)
try:
yield
finally:
setattr(module, var_name, old_value)
def _make_envs(
env_name,
frame_skip,
transformed_in,
transformed_out,
N,
selected_keys=None,
device="cpu",
kwargs=None,
):
torch.manual_seed(0)
if not transformed_in:
def create_env_fn():
return GymEnv(env_name, frame_skip=frame_skip, device=device)
else:
if env_name == "ALE/Pong-v5":
def create_env_fn():
return TransformedEnv(
GymEnv(env_name, frame_skip=frame_skip, device=device),
Compose(*[ToTensorImage(), RewardClipping(0, 0.1)]),
)
else:
def create_env_fn():
return TransformedEnv(
GymEnv(env_name, frame_skip=frame_skip, device=device),
Compose(
ObservationNorm(in_keys=["observation"], loc=0.5, scale=1.1),
RewardClipping(0, 0.1),
),
)
env0 = create_env_fn()
env_parallel = ParallelEnv(
N, create_env_fn, selected_keys=selected_keys, create_env_kwargs=kwargs
)
env_serial = SerialEnv(
N, create_env_fn, selected_keys=selected_keys, create_env_kwargs=kwargs
)
if transformed_out:
t_out = get_transform_out(env_name, transformed_in)
env0 = TransformedEnv(
env0,
t_out(),
)
env_parallel = TransformedEnv(
env_parallel,
t_out(),
)
env_serial = TransformedEnv(
env_serial,
t_out(),
)
else:
t_out = None
if _has_envpool:
env_multithread = _make_multithreaded_env(
env_name,
frame_skip,
t_out,
N,
selected_keys=None,
device="cpu",
kwargs=None,
)
else:
env_multithread = None
return env_parallel, env_serial, env_multithread, env0
def _make_multithreaded_env(
env_name,
frame_skip,
transformed_out,
N,
selected_keys=None,
device="cpu",
kwargs=None,
):
torch.manual_seed(0)
multithreaded_kwargs = (
{"frame_skip": frame_skip} if env_name == "ALE/Pong-v5" else {}
)
env_multithread = MultiThreadedEnv(
N,
env_name,
create_env_kwargs=multithreaded_kwargs,
device=device,
)
if transformed_out:
env_multithread = TransformedEnv(
env_multithread,
get_transform_out(env_name, transformed_in=False)(),
)
return env_multithread
def get_transform_out(env_name, transformed_in):
if env_name == "ALE/Pong-v5":
def t_out():
return (
Compose(*[ToTensorImage(), RewardClipping(0, 0.1)])
if not transformed_in
else Compose(*[ObservationNorm(in_keys=["pixels"], loc=0, scale=1)])
)
elif env_name == "CheetahRun-v1":
def t_out():
return Compose(
ObservationNorm(
in_keys=[("observation", "velocity")], loc=0.5, scale=1.1
),
RewardClipping(0, 0.1),
)
else:
def t_out():
return (
Compose(
ObservationNorm(in_keys=["observation"], loc=0.5, scale=1.1),
RewardClipping(0, 0.1),
)
if not transformed_in
else Compose(
ObservationNorm(in_keys=["observation"], loc=1.0, scale=1.0)
)
)
return t_out