forked from pytorch/rl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path__init__.py
111 lines (87 loc) · 2.87 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import abc
import collections
import time
from warnings import warn
import numpy as np
from torch import multiprocessing as mp
from ._extension import _init_extension
__version__ = "0.1"
_init_extension()
# if not HAS_OPS:
# print("could not load C++ libraries")
try:
mp.set_start_method("spawn")
except RuntimeError as err:
if str(err).startswith("context has already been set"):
mp_start_method = mp.get_start_method()
if mp_start_method != "spawn":
warn(
f"failed to set start method to spawn, "
f"and current start method for mp is {mp_start_method}."
)
class timeit:
"""
A dirty but easy to use decorator for profiling code
"""
_REG = {}
def __init__(self, name):
self.name = name
def __call__(self, fn):
def decorated_fn(*args, **kwargs):
with self:
out = fn(*args, **kwargs)
return out
return decorated_fn
def __enter__(self):
self.t0 = time.time()
def __exit__(self, exc_type, exc_val, exc_tb):
t = time.time() - self.t0
self._REG.setdefault(self.name, [0.0, 0.0, 0])
count = self._REG[self.name][1]
self._REG[self.name][0] = (self._REG[self.name][0] * count + t) / (count + 1)
self._REG[self.name][1] = self._REG[self.name][1] + t
self._REG[self.name][2] = count + 1
@staticmethod
def print(prefix=None):
keys = list(timeit._REG)
keys.sort()
for name in keys:
strings = []
if prefix:
strings.append(prefix)
strings.append(
f"{name} took {timeit._REG[name][0] * 1000:4.4} msec (total = {timeit._REG[name][1]} sec)"
)
print(" -- ".join(strings))
def _check_for_faulty_process(processes):
terminate = False
for p in processes:
if not p.is_alive():
terminate = True
for _p in processes:
if _p.is_alive():
_p.terminate()
if terminate:
break
if terminate:
raise RuntimeError(
"At least one process failed. Check for more infos in the log."
)
def seed_generator(seed):
max_seed_val = (
2 ** 32 - 1
) # https://discuss.pytorch.org/t/what-is-the-max-seed-you-can-set-up/145688
rng = np.random.default_rng(seed)
seed = int.from_bytes(rng.bytes(8), "big")
return seed % max_seed_val
class KeyDependentDefaultDict(collections.defaultdict):
def __init__(self, fun=lambda x: x):
self.fun = fun
super().__init__()
def __missing__(self, key):
value = self.fun(key)
return value