forked from pytorch/rl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
_utils_internal.py
470 lines (387 loc) · 14.7 KB
/
_utils_internal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import contextlib
import logging
import os
import os.path
import time
from functools import wraps
# Get relative file path
# this returns relative path from current file.
import pytest
import torch
import torch.cuda
from tensordict import tensorclass, TensorDict
from torchrl._utils import implement_for, seed_generator
from torchrl.data.utils import CloudpickleWrapper
from torchrl.envs import MultiThreadedEnv, ObservationNorm
from torchrl.envs.batched_envs import ParallelEnv, SerialEnv
from torchrl.envs.libs.envpool import _has_envpool
from torchrl.envs.libs.gym import _has_gym, GymEnv
from torchrl.envs.transforms import (
Compose,
RewardClipping,
ToTensorImage,
TransformedEnv,
)
# Specified for test_utils.py
__version__ = "0.3"
# Default versions of the environments.
CARTPOLE_VERSIONED = "CartPole-v1"
HALFCHEETAH_VERSIONED = "HalfCheetah-v4"
PENDULUM_VERSIONED = "Pendulum-v1"
PONG_VERSIONED = "ALE/Pong-v5"
@implement_for("gym", None, "0.21.0")
def _set_gym_environments(): # noqa: F811
global CARTPOLE_VERSIONED, HALFCHEETAH_VERSIONED, PENDULUM_VERSIONED, PONG_VERSIONED
CARTPOLE_VERSIONED = "CartPole-v0"
HALFCHEETAH_VERSIONED = "HalfCheetah-v2"
PENDULUM_VERSIONED = "Pendulum-v0"
PONG_VERSIONED = "Pong-v4"
@implement_for("gym", "0.21.0", None)
def _set_gym_environments(): # noqa: F811
global CARTPOLE_VERSIONED, HALFCHEETAH_VERSIONED, PENDULUM_VERSIONED, PONG_VERSIONED
CARTPOLE_VERSIONED = "CartPole-v1"
HALFCHEETAH_VERSIONED = "HalfCheetah-v4"
PENDULUM_VERSIONED = "Pendulum-v1"
PONG_VERSIONED = "ALE/Pong-v5"
@implement_for("gymnasium")
def _set_gym_environments(): # noqa: F811
global CARTPOLE_VERSIONED, HALFCHEETAH_VERSIONED, PENDULUM_VERSIONED, PONG_VERSIONED
CARTPOLE_VERSIONED = "CartPole-v1"
HALFCHEETAH_VERSIONED = "HalfCheetah-v4"
PENDULUM_VERSIONED = "Pendulum-v1"
PONG_VERSIONED = "ALE/Pong-v5"
if _has_gym:
_set_gym_environments()
def get_relative_path(curr_file, *path_components):
return os.path.join(os.path.dirname(curr_file), *path_components)
def get_available_devices():
devices = [torch.device("cpu")]
n_cuda = torch.cuda.device_count()
if n_cuda > 0:
for i in range(n_cuda):
devices += [torch.device(f"cuda:{i}")]
return devices
def get_default_devices():
num_cuda = torch.cuda.device_count()
if num_cuda == 0:
return [torch.device("cpu")]
elif num_cuda == 1:
return [torch.device("cuda:0")]
else:
# then run on all devices
return get_available_devices()
def generate_seeds(seed, repeat):
seeds = [seed]
for _ in range(repeat - 1):
seed = seed_generator(seed)
seeds.append(seed)
return seeds
# Decorator to retry upon certain Exceptions.
def retry(ExceptionToCheck, tries=3, delay=3, skip_after_retries=False):
def deco_retry(f):
@wraps(f)
def f_retry(*args, **kwargs):
mtries, mdelay = tries, delay
while mtries > 1:
try:
return f(*args, **kwargs)
except ExceptionToCheck as e:
msg = "%s, Retrying in %d seconds..." % (str(e), mdelay)
logging.info(msg)
time.sleep(mdelay)
mtries -= 1
try:
return f(*args, **kwargs)
except ExceptionToCheck as e:
if skip_after_retries:
raise pytest.skip(
f"Skipping after {tries} consecutive {str(e)}"
) from e
else:
raise e
return f_retry # true decorator
return deco_retry
@pytest.fixture
def dtype_fixture():
dtype = torch.get_default_dtype()
torch.set_default_dtype(torch.double)
yield dtype
torch.set_default_dtype(dtype)
@contextlib.contextmanager
def set_global_var(module, var_name, value):
old_value = getattr(module, var_name)
setattr(module, var_name, value)
try:
yield
finally:
setattr(module, var_name, old_value)
def _make_envs(
env_name,
frame_skip,
transformed_in,
transformed_out,
N,
device="cpu",
kwargs=None,
):
torch.manual_seed(0)
if not transformed_in:
def create_env_fn():
return GymEnv(env_name, frame_skip=frame_skip, device=device)
else:
if env_name == PONG_VERSIONED:
def create_env_fn():
base_env = GymEnv(env_name, frame_skip=frame_skip, device=device)
in_keys = list(base_env.observation_spec.keys(True, True))[:1]
return TransformedEnv(
base_env,
Compose(*[ToTensorImage(in_keys=in_keys), RewardClipping(0, 0.1)]),
)
else:
def create_env_fn():
base_env = GymEnv(env_name, frame_skip=frame_skip, device=device)
in_keys = list(base_env.observation_spec.keys(True, True))[:1]
return TransformedEnv(
base_env,
Compose(
ObservationNorm(in_keys=in_keys, loc=0.5, scale=1.1),
RewardClipping(0, 0.1),
),
)
env0 = create_env_fn()
env_parallel = ParallelEnv(N, create_env_fn, create_env_kwargs=kwargs)
env_serial = SerialEnv(N, create_env_fn, create_env_kwargs=kwargs)
for key in env0.observation_spec.keys(True, True):
obs_key = key
break
else:
obs_key = None
if transformed_out:
t_out = get_transform_out(env_name, transformed_in, obs_key=obs_key)
env0 = TransformedEnv(
env0,
t_out(),
)
env_parallel = TransformedEnv(
env_parallel,
t_out(),
)
env_serial = TransformedEnv(
env_serial,
t_out(),
)
else:
t_out = None
if _has_envpool:
env_multithread = _make_multithreaded_env(
env_name,
frame_skip,
t_out,
N,
device="cpu",
kwargs=None,
)
else:
env_multithread = None
return env_parallel, env_serial, env_multithread, env0
def _make_multithreaded_env(
env_name,
frame_skip,
transformed_out,
N,
device="cpu",
kwargs=None,
):
torch.manual_seed(0)
multithreaded_kwargs = (
{"frame_skip": frame_skip} if env_name == PONG_VERSIONED else {}
)
env_multithread = MultiThreadedEnv(
N,
env_name,
create_env_kwargs=multithreaded_kwargs,
device=device,
)
if transformed_out:
for key in env_multithread.observation_spec.keys(True, True):
obs_key = key
break
else:
obs_key = None
env_multithread = TransformedEnv(
env_multithread,
get_transform_out(env_name, transformed_in=False, obs_key=obs_key)(),
)
return env_multithread
def get_transform_out(env_name, transformed_in, obs_key=None):
if env_name == PONG_VERSIONED:
if obs_key is None:
obs_key = "pixels"
def t_out():
return (
Compose(*[ToTensorImage(in_keys=[obs_key]), RewardClipping(0, 0.1)])
if not transformed_in
else Compose(*[ObservationNorm(in_keys=[obs_key], loc=0, scale=1)])
)
elif env_name == HALFCHEETAH_VERSIONED:
if obs_key is None:
obs_key = ("observation", "velocity")
def t_out():
return Compose(
ObservationNorm(in_keys=[obs_key], loc=0.5, scale=1.1),
RewardClipping(0, 0.1),
)
else:
if obs_key is None:
obs_key = "observation"
def t_out():
return (
Compose(
ObservationNorm(in_keys=[obs_key], loc=0.5, scale=1.1),
RewardClipping(0, 0.1),
)
if not transformed_in
else Compose(ObservationNorm(in_keys=[obs_key], loc=1.0, scale=1.0))
)
return t_out
def make_tc(td):
"""Makes a tensorclass from a tensordict instance."""
class MyClass:
pass
MyClass.__annotations__ = {}
for key in td.keys():
MyClass.__annotations__[key] = torch.Tensor
return tensorclass(MyClass)
def rollout_consistency_assertion(
rollout, *, done_key="done", observation_key="observation", done_strict=False
):
"""Tests that observations in "next" match observations in the next root tensordict when done is False, and don't match otherwise."""
done = rollout[..., :-1]["next", done_key].squeeze(-1)
# data resulting from step, when it's not done
r_not_done = rollout[..., :-1]["next"][~done]
# data resulting from step, when it's not done, after step_mdp
r_not_done_tp1 = rollout[:, 1:][~done]
torch.testing.assert_close(
r_not_done[observation_key],
r_not_done_tp1[observation_key],
msg=f"Key {observation_key} did not match",
)
if done_strict and not done.any():
raise RuntimeError("No done detected, test could not complete.")
if done.any():
# data resulting from step, when it's done
r_done = rollout[..., :-1]["next"][done]
# data resulting from step, when it's done, after step_mdp and reset
r_done_tp1 = rollout[..., 1:][done]
# check that at least one obs after reset does not match the version before reset
assert not torch.isclose(
r_done[observation_key], r_done_tp1[observation_key]
).all()
def rand_reset(env):
"""Generates a tensordict with reset keys that mimic the done spec.
Values are drawn at random until at least one reset is present.
"""
full_done_spec = env.full_done_spec
result = {}
for reset_key, list_of_done in zip(env.reset_keys, env.done_keys_groups):
val = full_done_spec[list_of_done[0]].rand()
while not val.any():
val = full_done_spec[list_of_done[0]].rand()
result[reset_key] = val
# create a data structure that keeps the batch size of the nested specs
result = (
full_done_spec.zero().update(result).exclude(*full_done_spec.keys(True, True))
)
return result
def check_rollout_consistency_multikey_env(td: TensorDict, max_steps: int):
index_batch_size = (0,) * (len(td.batch_size) - 1)
# Check done and reset for root
observation_is_max = td["next", "observation"][..., 0, 0, 0] == max_steps + 1
next_is_done = td["next", "done"][index_batch_size][:-1].squeeze(-1)
assert (td["next", "done"][observation_is_max]).all()
assert (~td["next", "done"][~observation_is_max]).all()
# Obs after done is 0
assert (td["observation"][index_batch_size][1:][next_is_done] == 0).all()
# Obs after not done is previous obs
assert (
td["observation"][index_batch_size][1:][~next_is_done]
== td["next", "observation"][index_batch_size][:-1][~next_is_done]
).all()
# Check observation and reward update with count action for root
action_is_count = td["action"].long().argmax(-1).to(torch.bool)
assert (
td["next", "observation"][action_is_count]
== td["observation"][action_is_count] + 1
).all()
assert (td["next", "reward"][action_is_count] == 1).all()
# Check observation and reward do not update with no-count action for root
assert (
td["next", "observation"][~action_is_count]
== td["observation"][~action_is_count]
).all()
assert (td["next", "reward"][~action_is_count] == 0).all()
# Check done and reset for nested_1
observation_is_max = td["next", "nested_1", "observation"][..., 0] == max_steps + 1
# done at the root always prevail
next_is_done = td["next", "done"][index_batch_size][:-1].squeeze(-1)
assert (td["next", "nested_1", "done"][observation_is_max]).all()
assert (~td["next", "nested_1", "done"][~observation_is_max]).all()
# Obs after done is 0
assert (
td["nested_1", "observation"][index_batch_size][1:][next_is_done] == 0
).all()
# Obs after not done is previous obs
assert (
td["nested_1", "observation"][index_batch_size][1:][~next_is_done]
== td["next", "nested_1", "observation"][index_batch_size][:-1][~next_is_done]
).all()
# Check observation and reward update with count action for nested_1
action_is_count = td["nested_1"]["action"].to(torch.bool)
assert (
td["next", "nested_1", "observation"][action_is_count]
== td["nested_1", "observation"][action_is_count] + 1
).all()
assert (td["next", "nested_1", "gift"][action_is_count] == 1).all()
# Check observation and reward do not update with no-count action for nested_1
assert (
td["next", "nested_1", "observation"][~action_is_count]
== td["nested_1", "observation"][~action_is_count]
).all()
assert (td["next", "nested_1", "gift"][~action_is_count] == 0).all()
# Check done and reset for nested_2
observation_is_max = td["next", "nested_2", "observation"][..., 0] == max_steps + 1
# done at the root always prevail
next_is_done = td["next", "done"][index_batch_size][:-1].squeeze(-1)
assert (td["next", "nested_2", "done"][observation_is_max]).all()
assert (~td["next", "nested_2", "done"][~observation_is_max]).all()
# Obs after done is 0
assert (
td["nested_2", "observation"][index_batch_size][1:][next_is_done] == 0
).all()
# Obs after not done is previous obs
assert (
td["nested_2", "observation"][index_batch_size][1:][~next_is_done]
== td["next", "nested_2", "observation"][index_batch_size][:-1][~next_is_done]
).all()
# Check observation and reward update with count action for nested_2
action_is_count = td["nested_2"]["azione"].squeeze(-1).to(torch.bool)
assert (
td["next", "nested_2", "observation"][action_is_count]
== td["nested_2", "observation"][action_is_count] + 1
).all()
assert (td["next", "nested_2", "reward"][action_is_count] == 1).all()
# Check observation and reward do not update with no-count action for nested_2
assert (
td["next", "nested_2", "observation"][~action_is_count]
== td["nested_2", "observation"][~action_is_count]
).all()
assert (td["next", "nested_2", "reward"][~action_is_count] == 0).all()
def decorate_thread_sub_func(func, num_threads):
def new_func(*args, **kwargs):
assert torch.get_num_threads() == num_threads
return func(*args, **kwargs)
return CloudpickleWrapper(new_func)