forked from pytorch/rl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_trainer.py
320 lines (264 loc) · 8.85 KB
/
test_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import tempfile
from argparse import Namespace
from collections import OrderedDict
from os import walk, path
from time import sleep
import pytest
import torch
try:
from tensorboard.backend.event_processing import event_accumulator
from torchrl.trainers.loggers.tensorboard import TensorboardLogger
_has_tb = True
except ImportError:
_has_tb = False
from torchrl.data import (
TensorDict,
TensorDictPrioritizedReplayBuffer,
TensorDictReplayBuffer,
)
from torchrl.envs.libs.gym import _has_gym
from torchrl.trainers import Recorder
from torchrl.trainers import Trainer
from torchrl.trainers.helpers import transformed_env_constructor
from torchrl.trainers.trainers import (
SelectKeys,
ReplayBufferTrainer,
LogReward,
RewardNormalizer,
mask_batch,
BatchSubSampler,
UpdateWeights,
CountFramesLog,
)
from torchrl.trainers.trainers import _has_tqdm
class MockingOptim:
param_groups = [{"params": []}]
class MockingCollector:
called_update_policy_weights_ = False
def set_seed(self, seed, **kwargs):
return seed
def update_policy_weights_(self):
self.called_update_policy_weights_ = True
def shutdown(self):
pass
def mocking_trainer() -> Trainer:
trainer = Trainer(
MockingCollector(),
*[
None,
]
* 3,
MockingOptim()
)
trainer.collected_frames = 0
trainer._pbar_str = OrderedDict()
return trainer
def test_selectkeys():
trainer = mocking_trainer()
key1 = "first key"
key2 = "second key"
td = TensorDict(
{
key1: torch.randn(3),
key2: torch.randn(3),
},
[],
)
trainer.register_op("batch_process", SelectKeys([key1]))
td_out = trainer._process_batch_hook(td)
assert key1 in td_out.keys()
assert key2 not in td_out.keys()
@pytest.mark.parametrize("prioritized", [True, False])
def test_rb_trainer(prioritized):
trainer = mocking_trainer()
S = 100
if prioritized:
replay_buffer = TensorDictPrioritizedReplayBuffer(S, 1.1, 0.9)
else:
replay_buffer = TensorDictReplayBuffer(S)
N = 9
rb_trainer = ReplayBufferTrainer(replay_buffer=replay_buffer, batch_size=N)
trainer.register_op("batch_process", rb_trainer.extend)
trainer.register_op("process_optim_batch", rb_trainer.sample)
trainer.register_op("post_loss", rb_trainer.update_priority)
key1 = "first key"
key2 = "second key"
batch = 101
td = TensorDict(
{
key1: torch.randn(batch, 3),
key2: torch.randn(batch, 3),
},
[batch],
)
td_out = trainer._process_batch_hook(td)
assert td_out is td
td_out = trainer._process_optim_batch_hook(td)
assert td_out is not td
assert td_out.shape[0] == N
if prioritized:
td_out.set(replay_buffer.priority_key, torch.rand(N))
td_out = trainer._post_loss_hook(td_out)
if prioritized:
for idx in range(min(S, batch)):
if idx in td_out.get("index"):
assert replay_buffer._sum_tree[idx] != 1.0
else:
assert replay_buffer._sum_tree[idx] == 1.0
else:
assert "index" not in td_out.keys()
@pytest.mark.parametrize("logname", ["a", "b"])
@pytest.mark.parametrize("pbar", [True, False])
def test_log_reward(logname, pbar):
trainer = mocking_trainer()
trainer.collected_frames = 0
log_reward = LogReward(logname, log_pbar=pbar)
trainer.register_op("pre_steps_log", log_reward)
td = TensorDict({"reward": torch.ones(3)}, [3])
trainer._pre_steps_log_hook(td)
if _has_tqdm and pbar:
assert trainer._pbar_str[logname] == 1
else:
assert logname not in trainer._pbar_str
assert trainer._log_dict[logname][-1] == 1
def test_reward_norm():
torch.manual_seed(0)
trainer = mocking_trainer()
reward_normalizer = RewardNormalizer()
trainer.register_op("batch_process", reward_normalizer.update_reward_stats)
trainer.register_op("process_optim_batch", reward_normalizer.normalize_reward)
batch = 10
reward = torch.randn(batch, 1)
td = TensorDict({"reward": reward.clone()}, [batch])
td_out = trainer._process_batch_hook(td)
assert (td_out.get("reward") == reward).all()
assert not reward_normalizer._normalize_has_been_called
td_norm = trainer._process_optim_batch_hook(td)
assert reward_normalizer._normalize_has_been_called
torch.testing.assert_close(td_norm.get("reward").mean(), torch.zeros([]))
torch.testing.assert_close(td_norm.get("reward").std(), torch.ones([]))
def test_masking():
torch.manual_seed(0)
trainer = mocking_trainer()
trainer.register_op("batch_process", mask_batch)
batch = 10
td = TensorDict(
{
"mask": torch.zeros(batch, dtype=torch.bool).bernoulli_(),
"tensor": torch.randn(batch, 51),
},
[batch],
)
td_out = trainer._process_batch_hook(td)
assert td_out.shape[0] == td.get("mask").sum()
assert (td["tensor"][td["mask"].squeeze(-1)] == td_out["tensor"]).all()
def test_subsampler():
torch.manual_seed(0)
trainer = mocking_trainer()
batch_size = 10
sub_traj_len = 5
key1 = "key1"
key2 = "key2"
trainer.register_op(
"process_optim_batch",
BatchSubSampler(batch_size=batch_size, sub_traj_len=sub_traj_len),
)
td = TensorDict(
{
key1: torch.stack([torch.arange(0, 10), torch.arange(10, 20)], 0),
key2: torch.stack([torch.arange(0, 10), torch.arange(10, 20)], 0),
},
[2, 10],
)
td_out = trainer._process_optim_batch_hook(td)
assert td_out.shape == torch.Size([batch_size // sub_traj_len, sub_traj_len])
assert (td_out.get(key1) == td_out.get(key2)).all()
@pytest.mark.skipif(not _has_gym, reason="No gym library")
@pytest.mark.skipif(not _has_tb, reason="No tensorboard library")
def test_recorder():
with tempfile.TemporaryDirectory() as folder:
print(folder)
logger = TensorboardLogger(exp_name=folder)
args = Namespace()
args.env_name = "ALE/Pong-v5"
args.env_task = ""
args.grayscale = True
args.env_library = "gym"
args.frame_skip = 1
args.center_crop = []
args.from_pixels = True
args.vecnorm = False
args.norm_rewards = False
args.reward_scaling = 1.0
args.reward_loc = 0.0
args.noops = 0
args.record_frames = 24 // args.frame_skip
args.record_interval = 2
args.catframes = 4
args.image_size = 84
args.collector_devices = ["cpu"]
N = 8
recorder = transformed_env_constructor(
args,
video_tag="tmp",
norm_obs_only=True,
stats={"loc": 0, "scale": 1},
logger=logger,
)()
recorder = Recorder(
record_frames=args.record_frames,
frame_skip=args.frame_skip,
policy_exploration=None,
recorder=recorder,
record_interval=args.record_interval,
)
for _ in range(N):
recorder(None)
for (_, _, filenames) in walk(folder):
filename = filenames[0]
break
for _ in range(3):
ea = event_accumulator.EventAccumulator(
path.join(folder, filename),
size_guidance={
event_accumulator.IMAGES: 0,
},
)
ea.Reload()
print(ea.Tags())
img = ea.Images("tmp_ALE/Pong-v5_video")
try:
assert len(img) == N // args.record_interval
break
except AssertionError:
sleep(0.1)
def test_updateweights():
torch.manual_seed(0)
trainer = mocking_trainer()
T = 5
update_weights = UpdateWeights(trainer.collector, T)
trainer.register_op("post_steps", update_weights)
for t in range(T):
trainer._post_steps_hook()
assert trainer.collector.called_update_policy_weights_ is (t == T - 1)
assert trainer.collector.called_update_policy_weights_
def test_countframes():
torch.manual_seed(0)
trainer = mocking_trainer()
frame_skip = 3
batch = 10
count_frames = CountFramesLog(frame_skip=frame_skip)
trainer.register_op("pre_steps_log", count_frames)
td = TensorDict(
{"mask": torch.zeros(batch, dtype=torch.bool).bernoulli_()}, [batch]
)
trainer._pre_steps_log_hook(td)
assert count_frames.frame_count == td.get("mask").sum() * frame_skip
if __name__ == "__main__":
args, unknown = argparse.ArgumentParser().parse_known_args()
pytest.main([__file__, "--capture", "no", "--exitfirst"] + unknown)