forked from pytorch/rl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_postprocs.py
180 lines (150 loc) · 6.02 KB
/
test_postprocs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import pytest
import torch
from _utils_internal import get_available_devices
from tensordict.tensordict import assert_allclose_td, TensorDict
from torchrl.collectors.utils import split_trajectories
from torchrl.data.postprocs.postprocs import MultiStep
@pytest.mark.parametrize("n", range(13))
@pytest.mark.parametrize("device", get_available_devices())
@pytest.mark.parametrize("key", ["observation", "pixels", "observation_whatever"])
def test_multistep(n, key, device, T=11):
torch.manual_seed(0)
# mock data
b = 5
done = torch.zeros(b, T, 1, dtype=torch.bool, device=device)
done[0, -1] = True
done[1, -2] = True
done[2, -3] = True
done[3, -4] = True
terminal = done.clone()
terminal[:, -1] = done.sum(1) != 1
mask = done.clone().cumsum(1).cumsum(1) >= 2
mask = ~mask
total_obs = torch.randn(1, T + 1, 1, device=device).expand(b, T + 1, 1)
tensordict = TensorDict(
source={
key: total_obs[:, :T] * mask.to(torch.float),
"next": {key: total_obs[:, 1:] * mask.to(torch.float)},
"done": done,
"reward": torch.randn(1, T, 1, device=device).expand(b, T, 1)
* mask.to(torch.float),
"mask": mask,
},
batch_size=(b, T),
).to(device)
ms = MultiStep(
0.9,
n,
).to(device)
ms_tensordict = ms(tensordict.clone())
assert ms_tensordict.get("done").max() == 1
if n == 0:
assert_allclose_td(tensordict, ms_tensordict.select(*list(tensordict.keys())))
# assert that done at last step is similar to unterminated traj
assert (ms_tensordict.get("gamma")[4] == ms_tensordict.get("gamma")[0]).all()
assert (
ms_tensordict.get(("next", key))[4] == ms_tensordict.get(("next", key))[0]
).all()
assert (
ms_tensordict.get("steps_to_next_obs")[4]
== ms_tensordict.get("steps_to_next_obs")[0]
).all()
# check that next obs is properly replaced, or that it is terminated
next_obs = ms_tensordict.get(key)[:, (1 + ms.n_steps_max) :]
true_next_obs = ms_tensordict.get(("next", key))[:, : -(1 + ms.n_steps_max)]
terminated = ~ms_tensordict.get("nonterminal")
assert ((next_obs == true_next_obs) | terminated[:, (1 + ms.n_steps_max) :]).all()
# test gamma computation
torch.testing.assert_close(
ms_tensordict.get("gamma"), ms.gamma ** ms_tensordict.get("steps_to_next_obs")
)
# test reward
if n > 0:
assert (
ms_tensordict.get("reward") != ms_tensordict.get("original_reward")
).any()
else:
assert (
ms_tensordict.get("reward") == ms_tensordict.get("original_reward")
).all()
class TestSplits:
"""Tests the splitting of collected tensordicts in trajectories."""
@staticmethod
def create_fake_trajs(
num_workers=32,
traj_len=200,
):
traj_ids = torch.arange(num_workers).unsqueeze(-1)
steps_count = torch.zeros(num_workers).unsqueeze(-1)
workers = torch.arange(num_workers)
out = []
for _ in range(traj_len):
done = steps_count == traj_ids # traj_id 0 has 0 steps, 1 has 1 step etc.
td = TensorDict(
source={
"traj_ids": traj_ids,
"a": traj_ids.clone(),
"steps_count": steps_count,
"workers": workers,
"done": done,
},
batch_size=[num_workers],
)
out.append(td.clone())
steps_count += 1
traj_ids[done] = traj_ids.max() + torch.arange(1, done.sum() + 1)
steps_count[done] = 0
out = torch.stack(out, 1).contiguous()
return out
@pytest.mark.parametrize("num_workers", range(3, 34, 3))
@pytest.mark.parametrize(
"traj_len",
[
10,
17,
50,
97,
],
)
def test_splits(self, num_workers, traj_len):
trajs = TestSplits.create_fake_trajs(num_workers, traj_len)
assert trajs.shape[0] == num_workers
assert trajs.shape[1] == traj_len
split_trajs = split_trajectories(trajs)
assert split_trajs.shape[0] == split_trajs.get("traj_ids").max() + 1
assert split_trajs.shape[1] == split_trajs.get("steps_count").max() + 1
assert split_trajs.get("mask").sum() == num_workers * traj_len
assert split_trajs.get("done").sum(1).max() == 1
out_mask = split_trajs[split_trajs.get("mask")]
for i in range(split_trajs.shape[0]):
traj_id_split = split_trajs[i].get("traj_ids")[split_trajs[i].get("mask")]
assert 1 == len(traj_id_split.unique())
for w in range(num_workers):
assert (out_mask.get("workers") == w).sum() == traj_len
# Assert that either the chain is not done XOR if it is it must have the desired length (equal to traj id by design)
for i in range(split_trajs.get("traj_ids").max()):
idx_traj_id = out_mask.get("traj_ids") == i
# (!=) == (xor)
c1 = (idx_traj_id.sum() - 1 == i) and (
out_mask.get("done")[idx_traj_id].sum() == 1
) # option 1: trajectory is complete
c2 = out_mask.get("done")[idx_traj_id].sum() == 0
assert c1 != c2, (
f"traj_len={traj_len}, "
f"num_workers={num_workers}, "
f"traj_id={i}, "
f"idx_traj_id.sum()={idx_traj_id.sum()}, "
f"done={out_mask.get('done')[idx_traj_id].sum()}"
)
assert (
split_trajs.get("traj_ids").unique().numel()
== split_trajs.get("traj_ids").max() + 1
)
if __name__ == "__main__":
args, unknown = argparse.ArgumentParser().parse_known_args()
pytest.main([__file__, "--capture", "no", "--exitfirst"] + unknown)