-
Notifications
You must be signed in to change notification settings - Fork 6
/
worker.py
693 lines (585 loc) · 24.9 KB
/
worker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
import os
import random
import subprocess
import threading
import time
from copy import deepcopy
from typing import Tuple
import numpy as np
import ray
import torch
import torch.nn as nn
import torch.nn.functional as F
import wandb
from hydra.utils import instantiate
from torch.cuda.amp import GradScaler
from torch.optim import Adam
from torch.optim.lr_scheduler import MultiStepLR
from src.buffer import EpisodeData, LocalBuffer, SumTree
from src.config import config
from src.environment import Environment
Network = instantiate({"_target_": config.model_target, "_partial_": True})
if config.use_wandb:
os.environ["RAY_DEDUP_LOGS"] = "0" # disable RAY_DEDUP_LOGS=0
# Define the command execution function and mark it as a Ray remote function
@ray.remote
def execute_command(command):
try:
subprocess.run(command)
except subprocess.CalledProcessError:
pass
@ray.remote(num_cpus=1)
class GlobalBuffer:
def __init__(
self,
buffer_capacity=config.buffer_capacity,
init_env_settings=tuple(config.init_env_settings),
alpha=config.prioritized_replay_alpha,
beta=config.prioritized_replay_beta,
chunk_capacity=config.chunk_capacity,
):
self.capacity = buffer_capacity
self.chunk_capacity = chunk_capacity
self.num_chunks = buffer_capacity // chunk_capacity
self.ptr = 0
# prioritized experience replay
self.priority_tree = SumTree(buffer_capacity)
self.alpha = alpha
self.beta = beta
self.counter = 0
self.batched_data = []
self.stat_dict = {init_env_settings: []}
self.lock = threading.Lock()
self.env_settings_set = ray.put([init_env_settings])
self.obs_buf = [None] * self.num_chunks
self.last_act_buf = [None] * self.num_chunks
self.act_buf = np.zeros((buffer_capacity), dtype=np.uint8)
self.rew_buf = np.zeros((buffer_capacity), dtype=np.float16)
self.hid_buf = [None] * self.num_chunks
self.size_buf = np.zeros(self.num_chunks, dtype=np.uint8)
self.relative_pos_buf = [None] * self.num_chunks
self.comm_mask_buf = [None] * self.num_chunks
self.gamma_buf = np.zeros((self.capacity), dtype=np.float16)
self.num_agents_buf = np.zeros((self.num_chunks), dtype=np.uint8)
if config.use_wandb:
wandb.init(
project=config.project,
name=config.name,
id=config.run_id,
config=dict(config),
)
self.wandb = wandb
def __len__(self):
return np.sum(self.size_buf)
def run(self):
self.background_thread = threading.Thread(target=self._prepare_data, daemon=True)
self.background_thread.start()
def _prepare_data(self):
while True:
if len(self.batched_data) <= 4:
data = self.sample_batch(config.batch_size)
data_id = ray.put(data)
self.batched_data.append(data_id)
else:
time.sleep(0.1)
def sample_batch(self, *args, **kwargs): # NOTE: NEW, for avoiding bugs
return self._sample_batch(*args, **kwargs)
def get_batched_data(self):
"""
get one batch of data, called by learner.
"""
if len(self.batched_data) == 0:
print("no prepared data")
data = self._sample_batch(config.batch_size)
data_id = ray.put(data)
return data_id
else:
return self.batched_data.pop(0)
def add(self, data: EpisodeData):
"""
Add one episode data into replay buffer, called by actor if actor finished one episode.
data: actor_id 0, num_agents 1, map_len 2, obs_buf 3, act_buf 4, rew_buf 5,
hid_buf 6, comm_mask_buf 8, gamma 9, td_errors 10, sizes 11, done 12
"""
if data.actor_id >= 9: # eps-greedy < 0.01
stat_key = (data.num_agents, data.map_len)
if stat_key in self.stat_dict:
self.stat_dict[stat_key].append(data.done)
if len(self.stat_dict[stat_key]) == config.cl_history_size + 1:
self.stat_dict[stat_key].pop(0)
with self.lock:
for i, size in enumerate(data.sizes):
idxes = np.arange(
self.ptr * self.chunk_capacity, (self.ptr + 1) * self.chunk_capacity
)
start_idx = self.ptr * self.chunk_capacity
# update buffer size
self.counter += size
self.priority_tree.batch_update(
idxes,
data.td_errors[
i * self.chunk_capacity : (i + 1) * self.chunk_capacity
]
** self.alpha,
)
self.obs_buf[self.ptr] = np.copy(
data.obs[
i * self.chunk_capacity : (i + 1) * self.chunk_capacity
+ config.burn_in_steps
+ config.forward_steps
]
)
self.last_act_buf[self.ptr] = np.copy(
data.last_act[
i * self.chunk_capacity : (i + 1) * self.chunk_capacity
+ config.burn_in_steps
+ config.forward_steps
]
)
self.act_buf[start_idx : start_idx + size] = data.actions[
i * self.chunk_capacity : i * self.chunk_capacity + size
]
self.rew_buf[start_idx : start_idx + size] = data.rewards[
i * self.chunk_capacity : i * self.chunk_capacity + size
]
self.hid_buf[self.ptr] = np.copy(
data.hiddens[
i * self.chunk_capacity : i * self.chunk_capacity
+ size
+ config.forward_steps
]
)
self.size_buf[self.ptr] = size
self.relative_pos_buf[self.ptr] = np.copy(
data.relative_pos[
i * self.chunk_capacity : (i + 1) * self.chunk_capacity
+ config.burn_in_steps
+ config.forward_steps
]
)
self.comm_mask_buf[self.ptr] = np.copy(
data.comm_mask[
i * self.chunk_capacity : (i + 1) * self.chunk_capacity
+ config.burn_in_steps
+ config.forward_steps
]
)
self.gamma_buf[start_idx : start_idx + size] = data.gammas[
i * self.chunk_capacity : i * self.chunk_capacity + size
]
self.num_agents_buf[self.ptr] = data.num_agents
self.ptr = (self.ptr + 1) % self.num_chunks
del data
def _sample_batch(self, batch_size: int) -> Tuple:
b_obs, b_last_act, b_steps, b_relative_pos, b_comm_mask = [], [], [], [], []
b_hidden = []
idxes, priorities = [], []
with self.lock:
idxes, priorities = self.priority_tree.batch_sample(batch_size)
global_idxes = idxes // self.chunk_capacity
local_idxes = idxes % self.chunk_capacity
max_num_agents = np.max(self.num_agents_buf[global_idxes])
for global_idx, local_idx in zip(global_idxes.tolist(), local_idxes.tolist()):
assert (
local_idx < self.size_buf[global_idx]
), "index is {} but size is {}, p {}".format(
local_idx, self.size_buf[global_idx], self.priority_tree[idx]
)
steps = min(
config.forward_steps, self.size_buf[global_idx].item() - local_idx
)
relative_pos = self.relative_pos_buf[global_idx][
local_idx : local_idx + config.burn_in_steps + steps + 1
]
comm_mask = self.comm_mask_buf[global_idx][
local_idx : local_idx + config.burn_in_steps + steps + 1
]
obs = self.obs_buf[global_idx][
local_idx : local_idx + config.burn_in_steps + steps + 1
]
last_act = self.last_act_buf[global_idx][
local_idx : local_idx + config.burn_in_steps + steps + 1
]
hidden = self.hid_buf[global_idx][local_idx]
if steps < config.forward_steps:
pad_len = config.forward_steps - steps
obs = np.pad(obs, ((0, pad_len), (0, 0), (0, 0), (0, 0), (0, 0)))
last_act = np.pad(last_act, ((0, pad_len), (0, 0), (0, 0)))
relative_pos = np.pad(
relative_pos, ((0, pad_len), (0, 0), (0, 0), (0, 0))
)
comm_mask = np.pad(comm_mask, ((0, pad_len), (0, 0), (0, 0)))
if self.num_agents_buf[global_idx] < max_num_agents:
pad_len = max_num_agents - self.num_agents_buf[global_idx].item()
obs = np.pad(obs, ((0, 0), (0, pad_len), (0, 0), (0, 0), (0, 0)))
last_act = np.pad(last_act, ((0, 0), (0, pad_len), (0, 0)))
relative_pos = np.pad(
relative_pos, ((0, 0), (0, pad_len), (0, pad_len), (0, 0))
)
comm_mask = np.pad(comm_mask, ((0, 0), (0, pad_len), (0, pad_len)))
hidden = np.pad(hidden, ((0, pad_len), (0, 0)))
b_obs.append(obs)
b_last_act.append(last_act)
b_steps.append(steps)
b_relative_pos.append(relative_pos)
b_comm_mask.append(comm_mask)
b_hidden.append(hidden)
# importance sampling weight
min_p = np.min(priorities)
weights = np.power(priorities / min_p, -self.beta)
b_action = self.act_buf[idxes]
b_reward = self.rew_buf[idxes]
b_gamma = self.gamma_buf[idxes]
data = (
torch.from_numpy(np.stack(b_obs)).transpose(1, 0).contiguous(),
torch.from_numpy(np.stack(b_last_act)).transpose(1, 0).contiguous(),
torch.from_numpy(b_action).unsqueeze(1),
torch.from_numpy(b_reward).unsqueeze(1),
torch.from_numpy(b_gamma).unsqueeze(1),
torch.ByteTensor(b_steps),
torch.from_numpy(np.concatenate(b_hidden, axis=0)),
torch.from_numpy(np.stack(b_relative_pos)),
torch.from_numpy(np.stack(b_comm_mask)),
idxes,
torch.from_numpy(weights.astype(np.float16)).unsqueeze(1),
self.ptr,
)
return data
def update_priorities(self, idxes: np.ndarray, priorities: np.ndarray, old_ptr: int):
"""Update priorities of sampled transitions"""
with self.lock:
# discard the indices that already been discarded in replay buffer during training
if self.ptr > old_ptr:
# range from [old_ptr, self.ptr)
mask = (idxes < old_ptr * self.chunk_capacity) | (
idxes >= self.ptr * self.chunk_capacity
)
idxes = idxes[mask]
priorities = priorities[mask]
elif self.ptr < old_ptr:
# range from [0, self.ptr) & [old_ptr, self,capacity)
mask = (idxes < old_ptr * self.chunk_capacity) & (
idxes >= self.ptr * self.chunk_capacity
)
idxes = idxes[mask]
priorities = priorities[mask]
self.priority_tree.batch_update(
np.copy(idxes), np.copy(priorities) ** self.alpha
)
def stats(self, interval: int):
"""
Print log
"""
print("buffer update speed: {}/s".format(self.counter / interval))
print("buffer size: {}".format(np.sum(self.size_buf)))
print(" ", end="")
for i in range(config.init_env_settings[1], config.max_map_lenght + 1, 5):
print(" {:2d} ".format(i), end="")
print()
for num_agents in range(config.init_env_settings[0], config.max_num_agents + 1):
# for num_agents in range(config.init_env_settings[0], config.max_num_agents+1, 4):
print("{:2d}".format(num_agents), end="")
for map_len in range(
config.init_env_settings[1], config.max_map_lenght + 1, 5
):
if (num_agents, map_len) in self.stat_dict:
print(
"{:4d}/{:<3d}".format(
sum(self.stat_dict[(num_agents, map_len)]),
len(self.stat_dict[(num_agents, map_len)]),
),
end="",
)
else:
print(" N/A ", end="")
print()
# Wandb loggin
if config.use_wandb:
self.wandb.log({"buffer_size": np.sum(self.size_buf)})
self.wandb.log({"buffer_update_speed": self.counter / interval})
for num_agents in range(
config.init_env_settings[0], config.max_num_agents + 1
):
# for num_agents in range(config.init_env_settings[0], config.max_num_agents+1, 4):
for map_len in range(
config.init_env_settings[1], config.max_map_lenght + 1, 5
):
fmt = "Agents#{:02d}/Map#{:02d}"
if (num_agents, map_len) in self.stat_dict:
self.wandb.log(
{
"train/"
+ fmt.format(num_agents, map_len): sum(
self.stat_dict[(num_agents, map_len)]
)
/ (len(self.stat_dict[(num_agents, map_len)]) + 1e-10)
}
)
else:
self.wandb.log({"train/" + fmt.format(num_agents, map_len): 0})
for key, val in self.stat_dict.copy().items():
# print('{}: {}/{}'.format(key, sum(val), len(val)))
if (
len(val) == config.cl_history_size
and sum(val) >= config.cl_history_size * config.pass_rate
):
# add number of agents
add_agent_key = (key[0] + 1, key[1])
# add_agent_key = (key[0]+4, key[1])
if (
add_agent_key[0] <= config.max_num_agents
and add_agent_key not in self.stat_dict
):
self.stat_dict[add_agent_key] = []
if key[1] < config.max_map_lenght:
add_map_key = (key[0], key[1] + 5)
if add_map_key not in self.stat_dict:
self.stat_dict[add_map_key] = []
self.env_settings_set = ray.put(list(self.stat_dict.keys()))
self.counter = 0
def ready(self):
if len(self) >= config.learning_starts:
return True
else:
return False
def get_env_settings(self):
return self.env_settings_set
@ray.remote(num_cpus=1, num_gpus=1)
class Learner:
def __init__(self, buffer: GlobalBuffer):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model = Network()
self.model.to(self.device)
self.tar_model = deepcopy(self.model)
self.optimizer = Adam(
self.model.parameters(), lr=config.lr, weight_decay=config.weight_decay
)
self.scheduler = MultiStepLR(
self.optimizer,
milestones=config.lr_scheduler_milestones,
gamma=config.lr_scheduler_gamma,
)
self.buffer = buffer
self.counter = 0
self.last_counter = 0
self.done = False
self.loss = 0
self.data_list = []
self.store_weights()
if config.use_wandb:
wandb.init(
project=config.project,
name=config.name,
id=config.run_id,
config=dict(config),
)
def get_weights(self):
return self.weights_id
def store_weights(self):
state_dict = self.model.state_dict()
for k, v in state_dict.items():
state_dict[k] = v.cpu()
self.weights_id = ray.put(state_dict)
def run(self):
self.learning_thread = threading.Thread(target=self._train, daemon=True)
self.learning_thread.start()
def _train(self):
scaler = GradScaler()
b_seq_len = torch.LongTensor(config.batch_size)
b_seq_len[:] = config.burn_in_steps + 1
checkpoint_path = None
for i in range(1, config.training_steps + 1):
data_id = ray.get(self.buffer.get_batched_data.remote())
data = ray.get(data_id)
(
b_obs,
b_last_act,
b_action,
b_reward,
b_gamma,
b_steps,
b_hidden,
b_relative_pos,
b_comm_mask,
idxes,
weights,
old_ptr,
) = data
b_obs, b_last_act, b_action, b_reward = (
b_obs.to(self.device),
b_last_act.to(self.device),
b_action.to(self.device),
b_reward.to(self.device),
)
b_gamma, weights = b_gamma.to(self.device), weights.to(self.device)
b_hidden = b_hidden.to(self.device)
b_relative_pos, b_comm_mask = b_relative_pos.to(self.device), b_comm_mask.to(
self.device
)
b_action = b_action.long()
b_obs, b_last_act = b_obs.half(), b_last_act.half()
b_next_seq_len = b_seq_len + b_steps
with torch.no_grad():
b_q_ = self.tar_model(
b_obs,
b_last_act,
b_next_seq_len,
b_hidden,
b_relative_pos,
b_comm_mask,
).max(1, keepdim=True)[0]
target_q = b_reward + b_gamma * b_q_
b_q = self.model(
b_obs[: -config.forward_steps],
b_last_act[: -config.forward_steps],
b_seq_len,
b_hidden,
b_relative_pos[:, : -config.forward_steps],
b_comm_mask[:, : -config.forward_steps],
).gather(1, b_action)
td_error = target_q - b_q
priorities = (
td_error.detach().clone().squeeze().abs().clamp(1e-6).cpu().numpy()
)
loss = F.mse_loss(b_q, target_q)
self.loss += loss.item()
self.optimizer.zero_grad()
scaler.scale(loss).backward()
scaler.unscale_(self.optimizer)
nn.utils.clip_grad_norm_(self.model.parameters(), config.grad_norm_dqn)
scaler.step(self.optimizer)
scaler.update()
self.scheduler.step()
# store new weights in shared memory
if i % 2 == 0:
self.store_weights()
self.buffer.update_priorities.remote(idxes, priorities, old_ptr)
self.counter += 1
# update target net, save model
if i % config.target_network_update_freq == 0:
self.tar_model.load_state_dict(self.model.state_dict())
if i % config.save_interval == 0:
# create save path if not exist
if not os.path.exists(config.save_path):
os.makedirs(config.save_path)
checkpoint_path = os.path.join(config.save_path, f"{self.counter}.pth")
torch.save(self.model.state_dict(), checkpoint_path)
if i % config.val_interval == 0:
assert (
checkpoint_path is not None
), "A checkpoint path must be saved before validation"
self.validate(checkpoint_path, self.counter, config.run_id, config.name)
self.done = True
def validate(self, checkpoint_path, step, run_id, name):
"""Run subprocess in background and detach directly"""
print("Validation subprocess started")
command = [
"python",
"validate.py",
"--checkpoint_path",
checkpoint_path,
"--step",
str(step),
"--run_id",
run_id,
"--name",
name,
]
print(" ".join(command))
# Note: took me forever to get this working
# subprocess does not work apparently, so need to do stuff with Ray
future = execute_command.remote(command)
def stats(self, interval: int):
"""
print log
"""
print("number of updates: {}".format(self.counter))
print("update speed: {}/s".format((self.counter - self.last_counter) / interval))
if self.counter != self.last_counter:
print("loss: {:.4f}".format(self.loss / (self.counter - self.last_counter)))
if config.use_wandb:
wandb.log({"update speed": (self.counter - self.last_counter) / interval})
if self.counter != self.last_counter:
wandb.log({"loss": self.loss / (self.counter - self.last_counter)})
else:
wandb.log({"loss": 0})
wandb.log({"number of updates": self.counter})
self.last_counter = self.counter
self.loss = 0
return self.done
@ray.remote(num_cpus=1)
class Actor:
def __init__(
self, worker_id: int, epsilon: float, learner: Learner, buffer: GlobalBuffer
):
self.id = worker_id
self.model = Network()
self.model.eval()
self.env = Environment(curriculum=True)
self.epsilon = epsilon
self.learner = learner
self.global_buffer = buffer
self.max_episode_length = config.max_episode_length
self.counter = 0
def run(self):
done = False
obs, last_act, pos, local_buffer = self._reset()
while True:
# sample action
actions, q_val, hidden, relative_pos, comm_mask = self.model.step(
torch.from_numpy(obs.astype(np.float32)),
torch.from_numpy(last_act.astype(np.float32)),
torch.from_numpy(pos.astype(int)),
)
if random.random() < self.epsilon:
# Note: only one agent do random action in order to keep the environment stable
actions[0] = np.random.randint(0, config.action_dim)
# take action in env
(next_obs, last_act, next_pos), rewards, done, _ = self.env.step(actions)
# return data and update observation
local_buffer.add(
q_val[0],
actions[0],
last_act,
rewards[0],
next_obs,
hidden,
relative_pos,
comm_mask,
)
if done == False and self.env.steps < self.max_episode_length:
obs, pos = next_obs, next_pos
else:
# finish and send buffer
if done:
data = local_buffer.finish()
else:
_, q_val, _, relative_pos, comm_mask = self.model.step(
torch.from_numpy(next_obs.astype(np.float32)),
torch.from_numpy(last_act.astype(np.float32)),
torch.from_numpy(next_pos.astype(int)),
)
data = local_buffer.finish(q_val[0], relative_pos, comm_mask)
self.global_buffer.add.remote(data)
done = False
obs, last_act, pos, local_buffer = self._reset()
self.counter += 1
if self.counter == config.actor_update_steps:
self._update_weights()
self.counter = 0
def _update_weights(self):
"""load weights from learner"""
# update network parameters
weights_id = ray.get(self.learner.get_weights.remote())
weights = ray.get(weights_id)
self.model.load_state_dict(weights)
# update environment settings set (number of agents and map size)
new_env_settings_set = ray.get(self.global_buffer.get_env_settings.remote())
self.env.update_env_settings_set(ray.get(new_env_settings_set))
def _reset(self):
self.model.reset()
obs, last_act, pos = self.env.reset()
local_buffer = LocalBuffer(
self.id, self.env.num_agents, self.env.map_size[0], obs
)
return obs, last_act, pos, local_buffer