Skip to content

EasyPortrait - Face Parsing and Portrait Segmentation Dataset

Notifications You must be signed in to change notification settings

ai-forever/easyportrait

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

easyportrait

EasyPortrait - Face Parsing and Portrait Segmentation Dataset

We introduce a large-scale image dataset EasyPortrait for portrait segmentation and face parsing. Proposed dataset can be used in several tasks, such as background removal in conference applications, teeth whitening, face skin enhancement, red eye removal or eye colorization, and so on.

EasyPortrait dataset size is about 26GB, and it contains 20 000 RGB images (~17.5K FullHD images) with high quality annotated masks. This dataset is divided into training set, validation set and test set by subject user_id. The training set includes 14000 images, the validation set includes 2000 images, and the test set includes 4000 images.

Downloads

Link Size
images 26G
annotations 235M
train set 18.1G
validation set 2.6G
test set 5.2G

Structure

.
├── images.zip
│   ├── train/         # Train set: 14k
│   ├── val/           # Validation set: 2k
│   ├── test/          # Test set: 4k
├── annotations.zip
│   ├── meta.zip       # Meta-information (width, height, brightness, imhash, user_id)
│   ├── train/     
│   ├── val/       
│   ├── test/      
...

Models

We provide some pre-trained models as the baseline for portrait segmentation and face parsing. We use mean Intersection over Union (mIoU) as the main metric.

Model Name Parameters (M) Input shape mIOU
LR-ASPP + MobileNet-V3 1.14 1024 × 1024 77.55
FCN + MobileNet-V2 9.71 384 × 384 74.3
FCN + MobileNet-V2 9.71 512 × 512 77.01
FCN + MobileNet-V2 9.71 1024 × 1024 81.23
FPN + ResNet-50 28.5 512 × 512 83.13
FPN + ResNet-50 28.5 1024 × 1024 85.97
BiSeNet-V2 14.79 512 × 512 77.93
BiSeNet-V2 14.79 1024 × 1024 83.53
SegFormer-B0 3.72 384 × 384 79.82
SegFormer-B0 3.72 1024 × 1024 84.27
SegFormer-B2 24.73 384 × 384 81.59
SegFormer-B2 24.73 512 × 512 83.03
SegFormer-B2 24.73 1024 × 1024 85.72
SegFormer-B5 81.97 384 × 384 81.66
SegFormer-B5 81.97 1024 × 1024 85.80
SegNeXt + MSCAN-T 4.23 384 × 384 75.01
SegNeXt + MSCAN-T 4.23 512 × 512 78.59

Annotations

Annotations are presented as 2D-arrays, images in *.png format with several classes:

Index Class
0 BACKGROUND
1 PERSON
2 SKIN
3 LEFT BROW
4 RIGHT_BROW
5 LEFT_EYE
6 RIGHT_EYE
7 LIPS
8 TEETH

Also, we provide some additional meta-information for dataset in annotations/meta.zip file:

attachment_id user_id data_hash width height brightness train test valid
0 de81cc1c-... 1b... e8f... 1440 1920 136 True False False
1 3c0cec5a-... 64... df5... 1440 1920 148 False False True
2 d17ca986-... cf... a69... 1920 1080 140 False True False

where:

  • attachment_id - image file name without extension
  • user_id - unique anonymized user ID
  • data_hash - image hash by using Perceptual hashing
  • width - image width
  • height - image height
  • brightness - image brightness
  • train, test, valid are the binary columns for train / test / val subsets respectively

Images

easyportrait

Training, Evaluation and Testing on EasyPortrait

The code is based on MMSegmentation with 0.30.0 version.

Models were trained and evaluated on 8 NVIDIA V100 GPUs with CUDA 11.2.

For installation process follow the instructions here and use the requirements.txt file in our repository.

Training

For single GPU mode:

python ./pipelines/tools/train.py ./pipelines/local_configs/easy_portrait_experiments/<model_dir>/<config_file>.py --gpu-id <GPU_ID>

For distributed training mode:

./pipelines/tools/dist_train.sh ./pipelines/local_configs/easy_portrait_experiments/<model_dir>/<config_file>.py <NUM_GPUS>

Evaluation

For single GPU mode:

python ./pipelines/tools/test.py <PATH_TO_MODEL_CONFIG>  <PATH_TO_CHECKPOINT> --gpu-id <GPU_ID> --eval mIoU

For distributed evaluation mode:

./pipelines/tools/dist_test.sh <PATH_TO_MODEL_CONFIG>  <PATH_TO_CHECKPOINT> <NUM_GPUS> --eval mIoU

Run demo

python ./pipelines/demo/image_demo.py <PATH_TO_IMG> <PATH_TO_MODEL_CONFIG> <PATH_TO_CHECKPOINT> --palette=easy_portrait --out-file=<PATH_TO_OUT_FILE>

Authors and Credits

Citation

You can cite the paper using the following BibTeX entry:

@article{EasyPortrait,
    title={EasyPortrait - Face Parsing and Portrait Segmentation Dataset},
    author={Kapitanov, Alexander and Kvanchiani, Karina and Kirillova Sofia},
    journal={arXiv preprint <link>},
    year={2023}
}

License

Creative Commons License
This work is licensed under a variant of Creative Commons Attribution-ShareAlike 4.0 International License.

Please see the specific license.