Skip to content

agiresearch/AIOS

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

AIOS: LLM Agent Operating System

Code License

AIOS, a Large Language Model (LLM) Agent operating system, embeds large language model into Operating Systems (OS) as the brain of the OS, enabling an operating system "with soul" -- an important step towards AGI. AIOS is designed to optimize resource allocation, facilitate context switch across agents, enable concurrent execution of agents, provide tool service for agents, maintain access control for agents, and provide a rich set of toolkits for LLM Agent developers.

🏠 Architecture of AIOS

πŸ“° News

✈️ Getting Started

Installation

git clone https://github.com/agiresearch/AIOS.git

Make sure you have Python >= 3.9 and <= 3.11 Install the required packages using pip

pip install -r requirements.txt

Usage

If you use open-sourced models from huggingface, you need to setup your Hugging Face token and cache directory

export HUGGING_FACE_HUB_TOKEN=<YOUR READ TOKEN>
export HF_HOME=<YOUR CACHE DIRECTORY>

If you use LLM APIs like Gemini-pro, you need to setup your Gemini API Key

export GEMINI_API_KEY=<YOUR GEMINI API KEY>

Here we provide two modes to run the AIOS: interactive mode and deployment mode

Interactive Mode

In the interactive mode, you can interact with AIOS to see the output of each step in running multiple agents

# Use Gemma-2b-it, replace the max_gpu_memory and eval_device with your own and run
python main.py --llm_name gemma-2b-it --max_gpu_memory '{"0": "24GB"}' --eval_device "cuda:0" --max_new_tokens 256
# Use Mixtral-8x7b-it, replace the max_gpu_memory and eval_device with your own and run
python main.py --llm_name mixtral-8x7b-it --max_gpu_memory '{"0": "48GB", "1": "48GB", "2": "48GB"}' --eval_device "cuda:0" --max_new_tokens 256
# Use Gemini-pro, run with Gemini-pro
python main.py --llm_name gemini-pro

Deployment Mode

In the deployment mode, the outputs of running agents are stored in files. And in this mode, you are provided with multiple commands to run agents and see resource usage of agents (e.g., run <xxxAgent>: <YOUR TASK>, print agent)

# Use Gemma-2b-it, replace the max_gpu_memory and eval_device with your own and run
python simulator.py --llm_name gemma-2b-it --max_gpu_memory '{"0": "24GB"}' --eval_device "cuda:0" --max_new_tokens 256 --scheduler_log_mode file --agent_log_mode file
# Use Mixtral-8x7b-it
python simulator.py --llm_name mixtral-8x7b-it --max_gpu_memory '{"0": "48GB", "1": "48GB", "2": "48GB"}' --eval_device "cuda:0" --max_new_tokens 256 --scheduler_log_mode file --agent_log_mode file
# Use Gemini-pro
python simulator.py --llm_name gemini-pro --scheduler_log_mode file --agent_log_mode file

πŸ–‹οΈ References

@article{mei2024aios,
  title={AIOS: LLM Agent Operating System},
  author={Mei, Kai and Li, Zelong and Xu, Shuyuan and Ye, Ruosong and Ge, Yingqiang and Zhang, Yongfeng}
  journal={arXiv:2403.16971},
  year={2024}
}
@article{ge2023llm,
  title={LLM as OS, Agents as Apps: Envisioning AIOS, Agents and the AIOS-Agent Ecosystem},
  author={Ge, Yingqiang and Ren, Yujie and Hua, Wenyue and Xu, Shuyuan and Tan, Juntao and Zhang, Yongfeng},
  journal={arXiv:2312.03815},
  year={2023}
}

πŸš€ Contributions

AIOS is dedicated to facilitating LLM agents' development and deployment in a systematic way, collaborators and contributions are always welcome to foster a cohesive, effective and efficient AIOS-Agent ecosystem!

For detailed information on how to contribute, see CONTRIBUTE. If you would like to contribute to the codebase, issues or pull requests are always welcome!

🌟 Discord Channel

If you would like to join the community, ask questions, chat with fellows, learn about or propose new features, and participate in future developments, join our Discord Community!

πŸ“ͺ Contact

For issues related to AIOS development, we encourage submtting issues, pull requests, or initiating discussions in the AIOS Discord Channel. For other issues please feel free to contact Kai Mei (marknju2018@gmail.com) and Yongfeng Zhang (yongfeng@email.com).

🌍 AIOS Contributors