-
Notifications
You must be signed in to change notification settings - Fork 13
/
category.v
1048 lines (913 loc) · 39 KB
/
category.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* monae: Monadic equational reasoning in Coq *)
(* Copyright (C) 2020 monae authors, license: LGPL-2.1-or-later *)
From mathcomp Require Import all_ssreflect.
From mathcomp Require Import boolp.
Require Import preamble.
From HB Require Import structures.
(******************************************************************************)
(* Formalization of basic category theory *)
(* *)
(* This file provides definitions of category, functor, monad, as well as *)
(* basic theorems. It comes as a generalization of the first part of *)
(* hierarchy.v which is specialized to the category of sets. *)
(* *)
(* category == type of categories, a category C is implemented *)
(* with a universe a la Tarski, there is a realizer *)
(* function el that associates to each object A the *)
(* type el A of its elements; this corresponds to the *)
(* definition of concrete categories *)
(* {hom A -> B} == the hom-set of morphisms from A to B, where A and B *)
(* are objects of a category C *)
(* [hom f] == morphism corresponding to the function f *)
(* CT := [the category of Type] *)
(* FunctorLaws == module that defines the functor laws *)
(* \O == functor composition *)
(* F ~~> G == forall a, {hom F a ,G a}, which corresponds to a *)
(* natural transformation when it satisfies the *)
(* predicate naturality *)
(* NId == the identity natural transformation *)
(* [NEq F, G] == natural transformation from F to G where F and G *)
(* are convertible, especially when they are *)
(* compositions, and differ only by associativity or *)
(* insertion of unit functors *)
(* \v == vertical composition *)
(* \h == horizontal composition, or Godement product *)
(* F -| G == pair of adjoint functors (Module *)
(* Module AdjointFunctors); see also TriangularLaws. *)
(* Module AdjComp == define a pair of adjoint functors by composition of *)
(* two pairs of adjoint functors *)
(* JoinLaws, BindLaws == modules that define the monad laws *)
(* isMonad == mixin that defines the monad interface *)
(* Monad_of_ret_bind == factory, monad defined by ret and bind *)
(* Monad_of_ret_join == factory, monad defined by ret and join *)
(* Monad_of_adjoint_functors == module that defines a monad by a pair of *)
(* adjoint functors *)
(* Monad_of_category_monad == module, interface to isMonad from hierarchy.v *)
(* Monad_of_category_monad.m == turns a monad over the Type category into *)
(* a monad in the sense of isMonad from hierarchy.v *)
(******************************************************************************)
Reserved Notation "F ~~> G" (at level 51).
Reserved Notation "'{' 'hom' U '->' V '}'"
(at level 0, U at level 98, V at level 99, format "{ 'hom' U -> V }").
Reserved Notation "'{' 'hom' '[' C ']' U '->' V '}'"
(at level 0, U at level 98, V at level 99, format "{ 'hom' [ C ] U -> V }").
Declare Scope category_scope.
Delimit Scope category_scope with category.
Local Open Scope category_scope.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
(* opaque ssrfun.frefl blocks some proofs involving functor_ext *)
#[global]
Remove Hints frefl : core.
Lemma frefl_transparent A B (f : A -> B) : f =1 f.
Proof. by []. Defined.
#[global]
Hint Resolve frefl_transparent : core.
(* Our categories are always concrete; morphisms are just functions. *)
HB.mixin Record isCategory (obj : Type) := {
el : obj -> Type ;
inhom : forall a b, (el a -> el b) -> Prop ;
idfun_inhom : forall a, @inhom a a idfun ;
funcomp_inhom : forall a b c (f : el a -> el b) (g : el b -> el c),
inhom _ _ f -> inhom _ _ g -> inhom _ _ (g \o f)
}.
Arguments isCategory.phant_Build : clear implicits.
#[short(type=category)]
HB.structure Definition Category := {C of isCategory C}.
Arguments idfun_inhom [C] : rename.
Arguments funcomp_inhom [C a b c f g] : rename.
HB.mixin Record isHom (C : category) (a b : C) (f : el a -> el b) := {
isHom_inhom : inhom a b f
}.
HB.structure Definition Hom (C : category) (a b : C) :=
{f of isHom C a b f}.
Arguments isHom_inhom [C a b].
Notation "{ 'hom' U -> V }" := (Hom.type U V) : category_scope.
Notation "{ 'hom' '[' C ']' U '->' V }" := (@Hom.type C U V)
(only parsing) : category_scope.
Notation "[ 'hom' f ]" := [the {hom _ -> _} of f]
(at level 0, format "[ 'hom' f ]") : category_scope.
(* TODO: FIX: At some places, this [hom f] notation is not used for printing and
[the {hom ...} of f] is undesirably printed instead. *)
Lemma hom_ext (C : category) (a b : C) (f g : {hom a -> b}) :
f = g <-> f = g :> (_ -> _).
Proof.
move: f g => [f [[Hf]]] [g [[Hg]]] /=; split => [[]//|fg /=].
rewrite fg in Hf Hg *.
by rewrite (boolp.Prop_irrelevance Hf Hg).
Qed.
Section hom_interface.
Variable C : category.
Implicit Types a b c : C.
HB.instance Definition _ c := isHom.Build _ _ _ (@idfun (el c)) (idfun_inhom c).
HB.instance Definition _ (a b c : C) (f : {hom b -> c}) (g : {hom a -> b}):=
isHom.Build _ _ _ (f \o g) (funcomp_inhom (isHom_inhom g) (isHom_inhom f)).
End hom_interface.
(* Notation [\o f , .. , g , h] for hom compositions. *)
Module comps_notation.
Notation "[ '\o' f , .. , g , h ]" := (f \o .. (g \o h) ..) (at level 0,
format "[ '[' '\o' f , '/' .. , '/' g , '/' h ']' ]") : category_scope.
End comps_notation.
Section category_lemmas.
Variable C : category.
Lemma homfunK (a b : C) (f : {hom a -> b}) : [hom f] = f.
Proof. by []. Qed.
Lemma homcompA (a b c d : C) (h : {hom c -> d}) (g : {hom b -> c}) (f : {hom a -> b}) :
[hom [hom h \o g] \o f] = [hom h \o [hom g \o f]].
Proof. by move: f g h => [? ?] [? ?] [? ?]; apply hom_ext. Qed.
Lemma homcompE (a b c : C) (g : {hom b -> c}) (f : {hom a -> b}) :
[hom g \o f] = g \o f :> (el a -> el c).
Proof. by []. Qed.
Lemma hom_compE (a b c : C) (g : {hom b -> c}) (f : {hom a -> b}) x :
g (f x) = (g \o f) x.
Proof. exact: compE. Qed.
Import comps_notation.
(* Restricting the components of a composition to homs and using the lemma
homcompA, we can avoid the infinite sequence of redundunt compositions
"_ \o id" or "id \o _" that pops out when we "rewrite !compA".*)
Lemma hom_compA (a b c d : C) (h : {hom c -> d}) (g : {hom b -> c}) (f : {hom a -> b}) :
(h \o g) \o f = [\o h, g, f] :> (el a -> el d).
Proof. exact: compA. Qed.
Example hom_compA' (a b c d : C) (h : {hom c -> d}) (g : {hom b -> c}) (f : {hom a -> b}) :
(h \o g) \o f = [\o h, g, f].
Proof.
rewrite 10!compA.
Undo 1.
by rewrite !hom_compA.
(* rewrite !homcompA blocks id's from coming in, thanks to {hom _ ->_} conditions on arguments. *)
Abort.
(* Tactic support is desirable for the following two cases :
1. rewriting at the head of the sequence;
compare for example the lemmas natural and natural_head below
2. rewriting under [hom _];
dependent type errors and explicit application of hom_ext is tedious.
*)
End category_lemmas.
(* transportation of hom along equality *)
Section transport_lemmas.
Variable C : category.
Definition transport_dom
(a a' b : C) (p : a = a') (f : {hom a -> b}) : {hom a' -> b} :=
eq_rect a (fun x => {hom x -> b}) f a' p.
Definition transport_codom
(a b b' : C) (p : b = b') (f : {hom a -> b}) : {hom a -> b'} :=
eq_rect b (fun x => {hom a -> x}) f b' p.
Definition transport_hom (a a' b b' : C) (pa : a = a') (pb : b = b')
(f : {hom a -> b}) : {hom a' -> b'} :=
eq_rect b (fun y => {hom a' -> y})
(eq_rect a (fun x => {hom x -> b}) f a' pa)
b' pb.
Definition hom_of_eq (a b : C) (p : a = b) : {hom a -> b} :=
transport_codom p [hom idfun].
(* (* this works too; not sure which is better *)
Definition hom_of_eq (a b : C) (p : a = b) : {hom a -> b} :=
transport_codom p [hom idfun].
*)
(* F for factorization *)
Lemma transport_domF (a a' b : C) (p : a = a') (f : {hom a -> b}) :
transport_dom p f = [hom f \o hom_of_eq (esym p)].
Proof. apply hom_ext; by subst a'. Qed.
Lemma transport_codomF (a b b' : C) (p : b = b') (f : {hom a -> b}) :
transport_codom p f = [hom hom_of_eq p \o f].
Proof. apply hom_ext; by subst b'. Qed.
Lemma transport_homF (a a' b b' : C) (pa : a = a') (pb : b = b') (f : {hom a -> b}) :
transport_hom pa pb f = [hom hom_of_eq pb \o f \o hom_of_eq (esym pa)].
Proof. apply hom_ext; by subst a' b'. Qed.
End transport_lemmas.
Section Type_as_a_category.
(* TODO: consider using universe polymorphism *)
Let UUx := Type.
HB.instance Definition _ :=
isCategory.Build UUx (fun x : Type => x)
(fun _ _ _ => True) (fun=> I) (fun _ _ _ _ _ _ _ => I).
HB.instance Definition _ (a b : [the category of UUx]) (f : a -> b)
:= isHom.Build [the category of UUx] a b (f : el a -> el b) I.
End Type_as_a_category.
Notation CT := [the category of Type].
Module FunctorLaws.
Section def.
Variable (C D : category).
Variable (F : C -> D) (f : forall a b, {hom a -> b} -> {hom F a -> F b}).
Definition id := forall a, f [hom idfun] = [hom idfun] :> {hom F a -> F a}.
Definition comp := forall a b c (g : {hom b -> c}) (h : {hom a -> b}),
f [hom g \o h] = [hom f g \o f h].
End def.
End FunctorLaws.
HB.mixin Record isFunctor (C D : category) (F : C -> D) := {
actm : forall a b, {hom a -> b} -> {hom F a -> F b} ;
functor_id_hom : FunctorLaws.id actm ;
functor_o_hom : FunctorLaws.comp actm }.
HB.structure Definition Functor C D := {F of isFunctor C D F}.
(*Notation functor := Functor.type.*)
Definition functor_phant (C D : category) of phant (C -> D) := Functor.type C D.
Arguments actm [C D] F [a b] f: rename.
Notation "F # f" := (actm F f) : category_scope.
Notation "{ 'functor' fCD }" := (functor_phant (Phant fCD))
(format "{ 'functor' fCD }") : category_scope.
Section functor_lemmas.
Variables (C D : category) (F : {functor C -> D}).
Lemma functor_id a : F # [hom idfun] = idfun :> (el (F a) -> el (F a)).
Proof. by rewrite functor_id_hom. Qed.
Lemma functor_o a b c (g : {hom b -> c}) (h : {hom a -> b}) :
F # [hom g \o h] = F # g \o F # h :> (el (F a) -> el (F c)).
Proof. by rewrite functor_o_hom. Qed.
Lemma functor_ext (G : {functor C -> D}) (pm : F =1 G) :
(forall (A B : C) (f : {hom A -> B}),
transport_hom (pm A) (pm B) (F # f) = G # f) -> F = G.
Proof.
move: pm.
case: F => mf cf; case: G => mg cg /= pm.
move: cf cg.
rewrite /transport_hom.
move: (funext pm) => ppm.
subst mg => -[[ff idf cf]] -[[fg idg cg]] p.
have pp : ff = fg.
apply functional_extensionality_dep=> A.
apply functional_extensionality_dep=> B.
apply functional_extensionality_dep=> f.
move: (p A B f).
have -> // : pm = (fun _ => erefl).
exact: proof_irr.
rewrite {p}.
move: idf cf idg cg; rewrite pp => idf cf idg cg.
have -> : idf = idg by exact: proof_irr.
have -> : cf = cg by exact: proof_irr.
exact: erefl.
Qed.
End functor_lemmas.
Section functor_o_head.
Import comps_notation.
Variable C D : category.
Lemma functor_o_head a b c (g : {hom b -> c}) (h : {hom a -> b}) d (F : {functor C -> D})
(k : {hom d -> F a}) :
(F # [hom g \o h]) \o k = [\o F # g, F # h, k].
Proof. by rewrite functor_o_hom. Qed.
End functor_o_head.
Arguments functor_o_head [C D a b c g h d] F.
Section functorid.
Variables C : category.
Definition id_f (A B : C) (f : {hom A -> B}) := f.
Lemma id_id : FunctorLaws.id id_f. Proof. by []. Qed.
Lemma id_comp : FunctorLaws.comp id_f. Proof. by []. Qed.
HB.instance Definition _ := isFunctor.Build _ _ idfun id_id id_comp.
Definition FId : {functor C -> C} := [the {functor _ -> _} of idfun].
Lemma FIdf (A B : C) (f : {hom A -> B}) : FId # f = f.
Proof. by []. Qed.
End functorid.
Arguments FId {C}.
Section functorcomposition.
Variables C0 C1 C2 : category.
Variables (F : {functor C1 -> C2}) (G : {functor C0 -> C1}).
Definition functorcomposition a b := fun h : {hom a -> b} => F # (G # h).
Lemma functorcomposition_id : FunctorLaws.id functorcomposition.
Proof. by move=> A; rewrite /functorcomposition 2!functor_id_hom. Qed.
Lemma functorcomposition_comp : FunctorLaws.comp functorcomposition.
Proof.
by move=> a b c g h; rewrite /functorcomposition; rewrite 2!functor_o_hom.
Qed.
HB.instance Definition _ :=
isFunctor.Build C0 C2 (F \o G) functorcomposition_id functorcomposition_comp.
End functorcomposition.
Notation "F \O G" := ([the {functor _ -> _} of F \o G]) : category_scope.
Section functorcomposition_lemmas.
Lemma FCompE (C0 C1 C2 : category)
(F : {functor C1 -> C2}) (G : {functor C0 -> C1}) a b (k : {hom a -> b}) :
(F \O G) # k = F # (G # k).
Proof. by []. Qed.
Variables (C0 C1 C2 C3 : category).
Lemma FCompId (F : {functor C0 -> C1}) : F \O FId = F.
Proof. by apply: functor_ext=> *; rewrite FCompE FIdf. Qed.
Lemma FIdComp (F : {functor C0 -> C1}) : FId \O F = F.
Proof. by apply: functor_ext=> *; rewrite FCompE FIdf. Qed.
Lemma FCompA
(F : {functor C2 -> C3}) (G : {functor C1 -> C2}) (H : {functor C0 -> C1}) :
(F \O G) \O H = F \O (G \O H).
Proof. apply: functor_ext=> *; by rewrite FCompE. Qed.
End functorcomposition_lemmas.
Notation "F ~~> G" := (forall a, {hom F a ->G a}) : category_scope.
Definition naturality (C D : category) (F G : {functor C -> D}) (f : F ~~> G) :=
forall a b (h : {hom a -> b}), (G # h) \o (f a) = (f b) \o (F # h).
Arguments naturality [C D].
HB.mixin Record isNatural
(C D : category) (F G : {functor C -> D}) (f : F ~~> G) :=
{ natural : naturality F G f }.
#[short(type=nattrans)]
HB.structure Definition _ (C D : category) (F G : {functor C -> D}) :=
{f of isNatural C D F G f}.
Arguments natural [C D F G] phi : rename.
Notation "F ~> G" := (nattrans F G) : category_scope.
Section natural_transformation_lemmas.
Import comps_notation.
Variables (C D : category) (F G : {functor C -> D}).
Lemma natural_head (phi : F ~> G) a b c (h : {hom a -> b}) (f : {hom c -> F a}) :
[\o G # h, phi a, f] = [\o phi b, F # h, f].
Proof. by rewrite -!hom_compA natural. Qed.
Lemma nattrans_ext (f g : F ~> G) : f = g <-> forall a, (f a = g a :> (_ -> _)).
Proof.
split=> [ -> // |]; move: f g => [f [[Hf]]] [g [[Hg]]] /= fg''.
have fg' : forall a, f a = g a :> {hom _ -> _} by move=> a; rewrite hom_ext fg''.
move: (functional_extensionality_dep fg') => fg.
by move: Hf Hg; rewrite fg=> Hf Hg; rewrite (proof_irr _ Hf Hg).
Qed.
End natural_transformation_lemmas.
Arguments natural_head [C D F G].
Section id_natural_transformation.
Variables (C D : category) (F : {functor C -> D}).
Definition unnattrans_id := fun (a : C) => [hom (@idfun (el (F a)))].
Definition natural_id : naturality _ _ unnattrans_id.
Proof. by []. Qed.
HB.instance Definition _ := isNatural.Build C D F F unnattrans_id natural_id.
Definition NId : F ~> F := [the _ ~> _ of unnattrans_id].
Lemma NIdE : NId = (fun a => [hom idfun]) :> (_ ~~> _).
Proof. by []. Qed.
End id_natural_transformation.
Module NEq.
Section def.
Import comps_notation.
Variables (C D : category) (F G : {functor C -> D}).
Variable (Iobj : forall c, F c = G c).
Local Notation tc := (transport_codom (Iobj _)).
Local Notation td := (transport_dom (esym (Iobj _))).
Variable (Imor : forall a b (f : {hom a -> b}), tc (F # f) = td (G # f)).
Definition f : F ~~> G := fun (c : C) => tc [hom idfun].
Lemma natural : naturality F G f.
Proof.
move=> a b h.
rewrite /f !transport_codomF 2!homcompE 2!compfid.
have /hom_ext -> : [hom (hom_of_eq (Iobj b) \o F # h)] = [hom tc (F # h)]
by rewrite transport_codomF.
by rewrite Imor transport_domF homfunK /= esymK.
Qed.
HB.instance Definition _ := isNatural.Build C D F G f natural.
Definition n : F ~> G := [the _ ~> _ of f].
End def.
Module Exports.
Arguments n [C D] : simpl never.
Notation NEq := n.
Lemma NEqE C D F G Iobj Imor : @NEq C D F G Iobj Imor =
(fun a => transport_codom (Iobj _) [hom idfun]) :> (_ ~~> _).
Proof. by []. Qed.
End Exports.
End NEq.
Export NEq.Exports.
Notation "[ 'NEq' F , G ]" :=
(NEq F G (fun a => erefl) (fun a b f => erefl))
(at level 0, format "[ 'NEq' F , G ]") : category_scope.
Section vertical_composition.
Variables (C D : category) (F G H : {functor C -> D}).
Variables (g : G ~> H) (f : F ~> G).
Definition vcomp := fun a => [hom g a \o f a].
Definition natural_vcomp : naturality _ _ vcomp.
Proof. by move=> A B h; rewrite compA (natural g) -compA (natural f). Qed.
HB.instance Definition _ := isNatural.Build C D F H
vcomp natural_vcomp.
Definition VComp : F ~> H := [the F ~> H of vcomp].
End vertical_composition.
Notation "f \v g" := (VComp f g).
Section vcomp_lemmas.
Variables (C D : category) (F G H I : {functor C -> D}).
Variables (h : H ~> I) (g : G ~> H) (f : F ~> G).
Lemma VCompId : f \v NId F = f.
Proof. by apply nattrans_ext. Qed.
Lemma VIdComp : NId G \v f = f.
Proof. by apply nattrans_ext. Qed.
Lemma VCompA : (h \v g) \v f = h \v (g \v f).
Proof. by apply nattrans_ext. Qed.
Lemma VCompE_nat : g \v f = (fun a => [hom g a \o f a]) :> (_ ~~> _).
Proof. by []. Qed.
Lemma VCompE a : (g \v f) a = g a \o f a :> (_ -> _).
Proof. by []. Qed.
End vcomp_lemmas.
Section horizontal_composition.
Variables (C D E : category) (F G : {functor C -> D}) (F' G' : {functor D -> E}).
Variables (s : F ~> G) (t : F' ~> G').
Definition hcomp : F' \O F ~~> G' \O G :=
fun (c : C) => [hom t (G c) \o F' # s c].
Lemma natural_hcomp : naturality (F' \O F) (G' \O G) hcomp.
Proof.
move=> c0 c1 h.
rewrite [in LHS]compA (natural t) -[in LHS]compA -[in RHS]compA; congr (_ \o _).
rewrite [in RHS]FCompE -2!functor_o; congr (F' # _); apply hom_ext => /=.
by rewrite natural.
Qed.
HB.instance Definition _ := isNatural.Build C E (F' \O F) (G' \O G)
hcomp natural_hcomp.
Definition HComp : F' \O F ~> G' \O G := [the _ ~> _ of hcomp].
End horizontal_composition.
Notation "f \h g" := (locked (HComp g f)).
Section hcomp_extensionality_lemmas.
Variables (C D E : category) (F G : {functor C -> D}) (F' G' : {functor D -> E}).
Variables (s : F ~> G) (t : F' ~> G').
Lemma HCompE_def : t \h s = HComp s t. Proof. by unlock. Qed.
Lemma HCompE c : (t \h s) c = t (G c) \o F' # s c :> (_ -> _).
Proof. by unlock. Qed.
Lemma HCompE_alt c : (t \h s) c = G' # (s c) \o t (F c) :> (_ -> _).
Proof. by rewrite HCompE natural. Qed.
End hcomp_extensionality_lemmas.
Section hcomp_id_assoc_lemmas.
Import comps_notation.
Variables C D E Z : category.
Variables (F G : {functor C -> D}) (F' G' : {functor D -> E}) (F'' G'' : {functor E -> Z}).
Variables (s : F ~> G) (t : F' ~> G') (u : F'' ~> G'').
Lemma HCompId c : (t \h NId F) c = t (F c).
Proof. by rewrite hom_ext HCompE NIdE functor_id compfid. Qed.
Lemma HIdComp c : (NId G' \h s) c = G' # s c.
Proof. by rewrite hom_ext HCompE NIdE compidf. Qed.
(* TODO: introduce the application of a functor to a natural transformation? *)
Let HCompA_def : (u \h t) \h s =
[NEq G'' \O (G' \O G) , (G'' \O G') \O G]
\v (u \h (t \h s))
\v [NEq (F'' \O F') \O F , F'' \O (F' \O F)].
Proof.
apply nattrans_ext => c /=.
rewrite compidf compfid [in LHS]HCompE [in RHS]HCompE.
rewrite [in LHS]HCompE hom_compA -functor_o; congr [\o _, _].
by congr (_ # _); apply hom_ext; rewrite HCompE.
Qed.
Lemma HCompA c : ((u \h t) \h s) c = (u \h (t \h s)) c.
Proof. by rewrite hom_ext HCompA_def. Qed.
End hcomp_id_assoc_lemmas.
Section hcomp_lemmas.
Variables (C D E : category).
Variables (F G : {functor C -> D}) (F' G' : {functor D -> E}).
Variables (s : F ~> G) (t : F' ~> G').
(* higher level horizontal composition is a vertical composition of
horizontal compositions *)
Lemma HComp_VH : t \h s = (t \h NId G) \v (NId F' \h s).
Proof. by apply nattrans_ext=> a; rewrite VCompE HCompE HIdComp HCompId. Qed.
Lemma HComp_VH_aux : t \h s = (NId G' \h s) \v (t \h NId F).
Proof.
by apply nattrans_ext=> a; rewrite VCompE HCompE HIdComp HCompId -natural.
Qed.
Lemma NIdFId c : NId (@FId C) c = [hom idfun].
Proof. by []. Qed.
Lemma NIdFComp : NId (F' \O F) = NId F' \h NId F.
Proof. by apply nattrans_ext => c /=; rewrite HCompE /= compidf functor_id. Qed.
(* horizontal and vertical compositions interchange *)
Variables (H : {functor C -> D}) (H' : {functor D -> E}).
Variables (s' : G ~> H) (t' : G' ~> H').
Lemma HCompACA : (t' \h s') \v (t \h s) = (t' \v t) \h (s' \v s).
Proof.
apply nattrans_ext => c /=.
rewrite !HCompE !VCompE -compA -[in RHS]compA; congr (_ \o _).
by rewrite natural_head -functor_o.
Qed.
End hcomp_lemmas.
(* adjoint functor *)
(* We define adjointness F -| G in terms of its unit and counit. *)
Module TriangularLaws.
Section triangularlaws.
Variables (C D : category) (F : {functor C -> D}) (G : {functor D -> C}).
Variables (eta : FId ~> G \O F) (eps : F \O G ~> FId).
Definition left := forall c, eps (F c) \o F # (eta c) = idfun.
Definition right := forall d, G # (eps d) \o eta (G d) = idfun.
End triangularlaws.
End TriangularLaws.
Module AdjointFunctors.
Section def.
Variables (C D : category) (F : {functor C -> D}) (G : {functor D -> C}).
Record t := mk {
eta : FId ~> G \O F ;
eps : F \O G ~> FId ;
triL : TriangularLaws.left eta eps ;
triR : TriangularLaws.right eta eps
}.
End def.
Section lemmas.
Local Notation "F -| G" := (t F G).
Variables (C D : category) (F : {functor C -> D}) (G : {functor D -> C}).
Variable A : F -| G.
Definition hom_iso c d : {hom F c -> d} -> {hom c -> G d} :=
fun h => [hom (G # h) \o (eta A c)].
Definition hom_inv c d : {hom c -> G d} -> {hom F c -> d} :=
fun h => [hom (eps A d) \o (F # h)].
Import comps_notation.
Lemma hom_isoK (c : C) (d : D) (f : {hom F c -> d}) : hom_inv (hom_iso f) = f.
Proof.
rewrite /hom_inv /hom_iso; apply hom_ext => /=.
by rewrite functor_o -(natural_head (eps _)) triL.
Qed.
Lemma hom_invK (c : C) (d : D) (g : {hom c -> G d}) : hom_iso (hom_inv g) = g.
Proof.
rewrite /hom_inv /hom_iso; apply hom_ext => /=.
by rewrite functor_o hom_compA (natural (eta A)) -hom_compA triR.
Qed.
Lemma hom_iso_inj (c : C) (d : D) : injective (@hom_iso c d).
Proof. exact: can_inj (@hom_isoK c d). Qed.
Lemma hom_inv_inj (c : C) (d : D) : injective (@hom_inv c d).
Proof. exact: can_inj (@hom_invK c d). Qed.
Lemma eta_hom_iso (c : C) : eta A c = hom_iso [hom idfun].
Proof. by apply hom_ext; rewrite /hom_iso /= functor_id. Qed.
Lemma eps_hom_inv (d : D) : eps A d = hom_inv [hom idfun].
Proof. by apply hom_ext; rewrite /hom_inv /= functor_id compfid. Qed.
Lemma ext (B : F -| G) : eta A = eta B -> eps A = eps B -> A = B.
Proof.
move: A B => [? ? ? ?] [? ? ? ?] /= ? ?; subst.
congr mk; exact/proof_irr.
Qed.
(*
Lemma left_unique (F' : functor C D) (B : adjunction F' G) :
exists phi, phi : natural_isomorphism F F'.
Lemma right_unique (G' : functor D C) (B : adjunction F G') :
exists phi, phi : natural_isomorphism G G'.
*)
End lemmas.
Arguments hom_isoK [C D F G].
Arguments hom_invK [C D F G].
Arguments hom_iso_inj [C D F G].
Arguments hom_inv_inj [C D F G].
End AdjointFunctors.
Notation "F -| G" := (AdjointFunctors.t F G).
Module AdjComp.
Section def.
Import comps_notation.
Variables C0 C1 C2 : category.
Variables (F0 : {functor C0 -> C1}) (G0 : {functor C1 -> C0}).
Variables (F1 : {functor C1 -> C2}) (G1 : {functor C2 -> C1}).
Variables
(eta0 : FId ~> G0 \O F0) (eta1 : FId ~> G1 \O F1)
(eps0 : F0 \O G0 ~> FId) (eps1 : F1 \O G1 ~> FId)
(triL0 : TriangularLaws.left eta0 eps0)
(triL1 : TriangularLaws.left eta1 eps1)
(triR0 : TriangularLaws.right eta0 eps0)
(triR1 : TriangularLaws.right eta1 eps1).
Definition F := F1 \O F0.
Definition G := G0 \O G1.
Definition Eta : FId ~> G \O F :=
[NEq G0 \O (G1 \O F1) \O F0 , G \O F]
\v (NId G0 \h eta1 \h NId F0)
\v [NEq G0 \O F0 , G0 \O FId \O F0]
\v eta0.
Lemma EtaE a : Eta a = G0 # (eta1 (F0 a)) \o (eta0 a) :> (_ -> _).
Proof. by cbn; rewrite HCompId HIdComp. Qed.
Lemma EtaE_hom a : Eta a = [hom G0 # (eta1 (F0 a)) \o (eta0 a)].
Proof. by rewrite hom_ext EtaE. Qed.
Definition Eps : F \O G ~> FId :=
(eps1)
\v [NEq F1 \O FId \O G1 , F1 \O G1]
\v (NId F1 \h eps0 \h NId G1)
\v [NEq F \O G , (F1 \O (F0 \O G0)) \O G1].
Lemma EpsE a : Eps a = (eps1 _) \o F1 # (eps0 (G1 a)) :> (_ -> _).
Proof. by cbn; rewrite HCompId HIdComp. Qed.
Lemma EpsE_hom a : Eps a = [hom (eps1 _) \o F1 # (eps0 (G1 a))].
Proof. by rewrite hom_ext EpsE. Qed.
Lemma triL : TriangularLaws.left Eta Eps.
Proof.
(* NB(tanaka): This proof does NOT follow the manner of 2-category, for now. *)
move=> c; rewrite EpsE EtaE_hom hom_compA (functor_o F) /F -(functor_o_head F1).
set X := [hom [\o _, _]].
evar (TY : Type).
evar (Y : TY).
have-> : F1 # X = F1 # Y
by congr (F1 # _); rewrite hom_ext /X /= -(natural eps0); exact: erefl.
rewrite (functor_o_head F1) FIdf.
rewrite -!hom_compA triL1 compidf.
rewrite -[in RHS](functor_id F1) -(functor_o F1); congr (F1 # _).
by rewrite hom_ext /= triL0.
Qed.
Lemma triR : TriangularLaws.right Eta Eps.
Proof.
move=> c.
rewrite EpsE_hom EtaE (functor_o_head G) -(functor_o_head G0 (eta0 _)).
(* FRAGILE!
simpl here breaks the notation and renders the following set X impossible *)
set X:= [hom [\o _, _]].
evar (TY : Type).
evar (Y : TY).
have-> : G0 # X = G0 # Y
by congr (G0 # _); rewrite hom_ext /X /= (natural eta1); exact: erefl.
rewrite (functor_o G0) hom_compA FIdf triR0 compfid.
rewrite -[in RHS](functor_id G0) -(functor_o G0); congr (G0 # _).
by rewrite hom_ext /= triR1.
Qed.
End def.
Module Exports.
Section adj_comp.
Variables (C0 C1 C2 : category).
Variables (F : {functor C0 -> C1}) (G : {functor C1 -> C0}) (A0 : F -| G).
Variables (F' : {functor C1 -> C2}) (G' : {functor C2 -> C1}) (A1 : F' -| G').
Definition adj_comp := AdjointFunctors.mk
(triL (AdjointFunctors.triL A0) (AdjointFunctors.triL A1))
(triR (AdjointFunctors.triR A0) (AdjointFunctors.triR A1)).
End adj_comp.
End Exports.
End AdjComp.
Export AdjComp.Exports.
Module JoinLaws.
Section join_laws.
Variables (C : category) (M : {functor C -> C}) .
Variables (ret : FId ~~> M) (join : M \O M ~~> M).
Definition left_unit :=
forall a, join a \o ret (M a) = idfun :> (el (M a) -> el (M a)).
Definition right_unit :=
forall a, join a \o M # ret a = idfun :> (el (M a) -> el (M a)).
Definition associativity :=
forall a, join a \o M # join a = join a \o join (M a) :> (el (M (M (M a))) -> el (M a)).
End join_laws.
End JoinLaws.
Module BindLaws.
Section bindlaws.
Variables (C : category) (M : C -> C).
Variable b : forall A B, {hom A -> M B} -> {hom M A -> M B}.
Local Notation "m >>= f" := (b f m).
(*
bind is usually typed in the literature as follows:
Variable b : forall A B, M A -> (A -> M B) -> M B.
Local Notation "m >>= f" := (b m f).
This does not work well since it does not keep the {hom _ -> _} structure
in the result.
*)
Fact associative_aux x y z (f : {hom x -> M y}) (g : {hom y -> M z}) :
(fun w => (f w >>= g)) = (b g \o f).
Proof. by []. Qed.
Definition associative := forall A B C (m : el (M A)) (f : {hom A -> M B}) (g : {hom B -> M C}),
(m >>= f) >>= g = m >>= [hom b g \o f].
Definition left_neutral (r : forall A, {hom A -> M A}) :=
forall A B (f : {hom A -> M B}), [hom (b f \o r A)] = f.
Definition right_neutral (r : forall A, {hom A -> M A}) :=
forall A (m : el (M A)), m >>= r _ = m.
End bindlaws.
Section misc_laws_on_Type_monad.
Variable M : {functor CT -> CT}.
Variable b : forall A B, (A -> M B) -> M A -> M B.
Local Notation "m >>= f" := (b f m).
Definition bind_right_distributive (add : forall B, M B -> M B -> M B) :=
forall A B (m : M A) (k1 k2 : A -> M B),
m >>= (fun x => add _ (k1 x) (k2 x)) = add _ (m >>= k1) (m >>= k2).
Definition bind_left_distributive (add : forall B, M B -> M B -> M B) :=
forall A B (m1 m2 : M A) (k : A -> M B),
(add _ m1 m2) >>= k = add _ (m1 >>= k) (m2 >>= k).
Definition right_zero (f : forall A, M A) :=
forall A B (g : M B), g >>= (fun _ => f A) = f A.
Definition left_zero (f : forall A, M A) := forall A B g, f A >>= g = f B.
Definition left_id (r : forall A, M A) (add : forall B, M B -> M B -> M B) :=
forall A (m : M A), add _ (r _) m = m.
Definition right_id (r : forall A, M A) (add : forall B, M B -> M B -> M B) :=
forall A (m : M A), add _ m (r _) = m.
End misc_laws_on_Type_monad.
End BindLaws.
Section bind_lemmas.
Variables (C : category) (M : C -> C).
Variable b : forall A B, {hom A -> M B} -> {hom M A -> M B}.
Local Notation "m >>= f" := (b f m).
Lemma bind_left_neutral_hom_fun (r : forall A, {hom A -> M A})
: BindLaws.left_neutral b r
<-> forall A B (f : {hom A -> M B}), b f \o r A = f.
Proof. by split; move=> H A B f; move: (H A B f); move/hom_ext. Qed.
End bind_lemmas.
(*
The following definition of the structure fails with:
Error: HB: coercion not to Sortclass or Funclass not supported yet.
HB.mixin Record isMonad (C : category) (M : {functor C -> C}) := {
ret : FId ~> M ;
join : M \O M ~> M ;
bind : forall (a b : C), {hom a -> M b} -> {hom M a -> M b} ;
bindE : forall (a b : C) (f : {hom a -> M b}) (m : el (M a)),
bind a b f m = join b ((M # f) m) ;
joinretM : JoinLaws.left_unit ret join ;
joinMret : JoinLaws.right_unit ret join ;
joinA : JoinLaws.associativity join
}.
HB.structure Definition Monad (C : category) := {M of isMonad C M}.
*)
HB.mixin Record isMonad (C : category) (M : C -> C) of @Functor C C M := {
ret : FId ~> [the {functor C -> C} of M] ;
join : [the {functor C -> C} of M] \O [the {functor C -> C} of M] ~>
[the {functor C -> C} of M] ;
bind : forall (a b : C), {hom a -> M b} -> {hom M a -> M b} ;
bindE : forall (a b : C) (f : {hom a -> M b}) (m : el (M a)),
bind a b f m = join b (([the {functor C -> C} of M] # f) m) ;
joinretM : JoinLaws.left_unit ret join ;
joinMret : JoinLaws.right_unit ret join ;
joinA : JoinLaws.associativity join
}.
#[short(type=monad)]
HB.structure Definition Monad (C : category) :=
{M of isMonad C M & isFunctor C C M}.
Arguments bind {C M a b} : rename, simpl never.
Notation "m >>= f" := (bind f m).
Section monad_interface.
Variable (C : category) (M : monad C).
(* *_head lemmas are for [fun of f] \o ([fun of g] \o ([fun of h] \o ..))*)
Import comps_notation.
Lemma joinretM_head a (c : C) (f : {hom c -> M a}) : [\o join _, ret _, f] = f.
Proof. by rewrite compA joinretM. Qed.
Lemma joinMret_head a (c : C) (f : {hom c -> M a}) : [\o join _, M # ret _, f] = f.
Proof. by rewrite compA joinMret. Qed.
Lemma joinA_head a (c : C) (f : {hom c -> M (M (M a))}) :
[\o join _, M # join _, f] = [\o join _, join _, f].
Proof. by rewrite compA joinA. Qed.
End monad_interface.
HB.factory Record Monad_of_ret_join (C : category) (M : C -> C)
of @Functor C C M := {
ret : FId ~> [the {functor C -> C} of M] ;
join : M \O M ~> [the {functor C -> C} of M] ;
joinretM : JoinLaws.left_unit ret join ;
joinMret : JoinLaws.right_unit ret join ;
joinA : JoinLaws.associativity join
}.
HB.builders Context C M of Monad_of_ret_join C M.
Let F := [the {functor _ -> _} of M].
Let bind (a b : C) (f : {hom a -> M b}) : {hom M a -> M b} := [hom join _ \o (F # f)].
Let bindE (a b : C) (f : {hom a -> M b}) (m : el (M a)) :
bind f m = join b (([the {functor C -> C} of M] # f) m).
Proof. by []. Qed.
HB.instance Definition _ := isMonad.Build C M bindE joinretM joinMret joinA.
HB.end.
(* Monads defined by ret and bind; M need not be a priori a functor *)
HB.factory Record Monad_of_ret_bind (C : category) (acto : C -> C) := {
ret' : forall a, {hom a -> acto a} ;
bind : forall (a b : C), {hom a -> acto b} -> {hom acto a -> acto b} ;
bindretf : BindLaws.left_neutral bind ret' ;
bindmret : BindLaws.right_neutral bind ret' ;
bindA : BindLaws.associative bind ;
}.
HB.builders Context C M of Monad_of_ret_bind C M.
Let fmap a b (f : {hom a -> b}) := bind [hom ret' b \o f].
Let bindretf_fun : (forall (a b : C) (f : {hom a -> M b}),
bind f \o ret' a = f).
Proof. by apply/bind_left_neutral_hom_fun/bindretf. Qed.
Let fmap_id : FunctorLaws.id fmap.
Proof.
move=> A; apply/hom_ext/funext=>m. rewrite /fmap.
rewrite/idfun/=.
rewrite -[in RHS](bindmret m).
congr (fun f => bind f m).
by rewrite hom_ext.
Qed.
Let fmap_o : FunctorLaws.comp fmap.
Proof.
move=> a b c g h; apply/hom_ext/funext=>m; rewrite /fmap/=.
rewrite bindA/=.
congr (fun f => bind f m); rewrite hom_ext/=.
by rewrite -[in RHS]hom_compA bindretf_fun.
Qed.
HB.instance Definition _ := isFunctor.Build _ _ _ fmap_id fmap_o.
Notation F := [the {functor _ -> _} of M].
Let ret'_naturality : naturality FId F ret'.
Proof. by move=> A B h; rewrite FIdf bindretf_fun. Qed.
HB.instance Definition _ := isNatural.Build _ _ FId F
(ret' : FId ~~> M)(*NB: fails without this type constraint*) ret'_naturality.
Definition ret := [the FId ~> F of ret'].
Let join' : F \O F ~~> F := fun _ => bind [hom idfun].
Let fmap_bind a b c (f : {hom a ->b}) m (g : {hom c ->F a}) :
(fmap f) (bind g m) = bind [hom fmap f \o g] m.
Proof. by rewrite /fmap bindA. Qed.
Let join'_naturality : naturality (F \O F) F join'.
Proof.
move => A B h.
rewrite /join /= funeqE => m /=.
rewrite fmap_bind bindA /=.
congr (fun f => bind f m).
rewrite hom_ext/=.
rewrite -[in RHS]hom_compA.
by rewrite bindretf_fun.
Qed.
HB.instance Definition _ := isNatural.Build _ _ _ _ _ join'_naturality.
Definition join := [the F \O F ~> F of join'].
Let bind_fmap a b c (f : {hom a -> b}) (m : el (F a)) (g : {hom b -> F c}) :
bind g (fmap f m) = bind [hom g \o f] m .
Proof.
rewrite bindA /=; congr (fun f => bind f m); apply hom_ext => /=.
by rewrite -hom_compA bindretf_fun.
Qed.
Lemma bindE (a b : C) (f : {hom a -> F b}) (m : el (F a)) :
bind f m = join b (([the {functor C -> C} of F] # f) m).
Proof.
rewrite /join /=.
rewrite /=bind_fmap/idfun/=.
congr (fun f => bind f m).
by rewrite hom_ext.
Qed.
Lemma joinretM : JoinLaws.left_unit ret join.
Proof. by rewrite /join => A; rewrite bindretf_fun. Qed.
Let bind_fmap_fun a b c (f : {hom a ->b}) (g : {hom b -> F c}) :
bind g \o fmap f = bind [hom g \o f].
Proof. rewrite funeqE => ?; exact: bind_fmap. Qed.
Lemma joinMret : JoinLaws.right_unit ret join.
Proof.
rewrite /join => A; rewrite funeqE => ma.
rewrite bind_fmap_fun/= -[in RHS](bindmret ma).
congr (fun f => bind f ma).
by rewrite hom_ext.
Qed.
Lemma joinA : JoinLaws.associativity join.
Proof.
move => A; rewrite funeqE => mmma.
rewrite /join.
rewrite bind_fmap_fun/= bindA/=.
congr (fun f => bind f mmma).
by rewrite hom_ext.
Qed.
HB.instance Definition _ := isMonad.Build C M bindE joinretM joinMret joinA.
HB.end.
Module _Monad_of_adjoint_functors.
Section def.
Import comps_notation.
Variables C D : category.
Variables (F : {functor C -> D}) (G : {functor D -> C}).
Variable A : F -| G.
Definition eps := AdjointFunctors.eps A.
Definition eta := AdjointFunctors.eta A.
Definition M := G \O F.
Definition join : M \O M ~~> M := fun a => G # (eps (F a)).
Definition ret : FId ~~> M := fun a => eta a.
Let triL := AdjointFunctors.triL A.
Let triR := AdjointFunctors.triR A.
Lemma naturality_ret : naturality FId M ret.
Proof. by move=> *; rewrite (natural eta). Qed.
HB.instance Definition _ := isNatural.Build C C FId M ret naturality_ret.
Lemma naturality_join : naturality (M \O M) M join.
Proof.
rewrite /join => a b h.
rewrite /M !FCompE -2!(functor_o G); congr (G # _).
by rewrite hom_ext /= (natural eps).
Qed.
HB.instance Definition _ := isNatural.Build C C (M \O M) M join naturality_join.
Let joinE : join = fun a => G # (@eps (F a)).
Proof. by []. Qed.
Let join_associativity' a : join a \o join (M a) = join a \o (M # join a).
Proof.
rewrite joinE -2!(functor_o G).
by congr (G # _); rewrite hom_ext /= (natural eps).
Qed.
Lemma join_associativity : JoinLaws.associativity join.
Proof. by move=> a; rewrite join_associativity'. Qed.
Lemma join_left_unit : JoinLaws.left_unit ret join.
Proof. by move=> a; rewrite joinE triR. Qed.
Lemma join_right_unit : JoinLaws.right_unit ret join.
Proof.
move=> a; rewrite joinE. rewrite /M FCompE.
rewrite /= -functor_o -[in RHS]functor_id.
congr (G # _).
by rewrite hom_ext/= triL.
Qed.
(*TODO: make this go through
HB.instance Definition _ :=
Monad_of_ret_join.Build join_left_unit join_right_unit join_associativity.*)
Let bind (a b : C) (f : {hom a -> M b}) : {hom M a -> M b} :=
[hom join _ \o (M # f)].
Let bindE (a b : C) (f : {hom a -> M b}) (m : el (M a)) :
bind f m = join b (([the {functor C -> C} of M] # f) m).
Proof. by []. Qed.
HB.instance Definition monad_of_adjoint_mixin :=
isMonad.Build C (M : _ -> _)
bindE join_left_unit join_right_unit join_associativity.
End def.
Definition build (C D : category)
(F : {functor C -> D}) (G : {functor D -> C}) (A : F -| G) :=
Monad.Pack (Monad.Class (monad_of_adjoint_mixin A)).
End _Monad_of_adjoint_functors.
Notation Monad_of_adjoint_functors := _Monad_of_adjoint_functors.build.
(* TODO: Can we turn this into a factory? *)
(* Converter from category.monad to hierarchy.monad *)
Require Import hierarchy.
Module Monad_of_category_monad.
Section def.
Variable M : category.Monad.Exports.monad CT.
Definition acto : Type -> Type := M.
Definition actm (A B : Type) (h : A -> B) (x : acto A) : acto B :=
(M # [the {hom A -> B} of h]) x.
Lemma actm_id A : actm id = @id (acto A).
Proof. by rewrite /actm category.functor_id. Qed.
Lemma actm_comp A B C (g : B -> C) (h : A -> B) :
actm (g \o h) = actm g \o actm h.
Proof. by rewrite {1}/actm category.functor_o. Qed.
HB.instance Definition _ := hierarchy.isFunctor.Build acto actm_id actm_comp.
Let F := [the functor of acto].
Lemma actmE (a b : CT) (h : {hom a -> b}) : (F # h)%monae = (M # h)%category.