Skip to content

This is a library dedicated to adversarial machine learning. Its purpose is to allow rapid crafting and analysis of attacks and defense methods for machine learning models. The Adversarial Robustness Toolbox provides an implementation for many state-of-the-art methods for attacking and defending classifiers. https://developer.ibm.com/code/open/p…

License

Notifications You must be signed in to change notification settings

afcarl/adversarial-robustness-toolbox

 
 

Repository files navigation

Adversarial Robustness Toolbox (ART v0.1)

GitHub version Documentation Status

This is a library dedicated to adversarial machine learning. Its purpose is to allow rapid crafting and analysis of attacks and defense methods for machine learning models. The Adversarial Robustness Toolbox provides an implementation for many state-of-the-art methods for attacking and defending classifiers.

The library is still under development. Feedback, bug reports and extensions are highly appreciated. Get in touch with us on Slack (invite here)!

Supported attack and defense methods

The Adversarial Robustness Toolbox contains implementations of the following attacks:

The following defense methods are also supported:

Setup

The Adversarial Robustness Toolbox is designed to run with Python 3 (and most likely Python 2 with small changes). You can either download the source code or clone the repository in your directory of choice:

git clone https://github.com/IBM/adversarial-robustness-toolbox

To install the project dependencies, use the requirements file:

pip install .

The library comes with a basic set of unit tests. To check your install, you can run all the unit tests by calling in the library folder:

bash run_tests.sh

The configuration file config/config.ini allows to set custom paths for data. By default, data is downloaded in the data folder as follows:

[DEFAULT]
profile=LOCAL

[LOCAL]
data_path=./data
mnist_path=./data/mnist
cifar10_path=./data/cifar-10
stl10_path=./data/stl-10

If the datasets are not present at the indicated path, loading them will also download the data.

Running ART

Some examples of how to use ART when writing your own code can be found in the examples folder. See examples/README.md for more information about what each example does. To run an example, use the following command:

python3 examples/<example_name>.py

About

This is a library dedicated to adversarial machine learning. Its purpose is to allow rapid crafting and analysis of attacks and defense methods for machine learning models. The Adversarial Robustness Toolbox provides an implementation for many state-of-the-art methods for attacking and defending classifiers. https://developer.ibm.com/code/open/p…

Resources

License

Code of conduct

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%