-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata_handling.py
93 lines (81 loc) · 3.31 KB
/
data_handling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import os
import rasterio
import numpy as np
def read_img(path, read_pre=True, read_post=True, pre_names=None, post_names=None):
"""
Reading files from a folder in a 3-dimensional numpy array. channels first,
if both pre- and post- images are read, one 6-layer array is created,
pre-event image first, post-event image last without georeferencing
:param path: string, path to the folder with the files, for example './ventura_train/'
:param read_pre: can be set to False if you do not want to read pre image
:param read_post: can be set to False if you do not want to read post image
:param pre_names: filenames for R, G and B channel in pre-image
:param post_names: filenames for R, G and B channel in post-image
"""
if not pre_names:
pre_names = ['pre_r.tif', 'pre_g.tif', 'pre_b.tif']
if not post_names:
post_names = ['post_r.tif', 'post_g.tif', 'post_b.tif']
# with rasterio.open(os.path.join(path, 'pre_r.tif')) as src:
# size = src.size
img = None
if read_pre:
for name_ in pre_names:
with rasterio.open(os.path.join(path, name_)) as src:
channel = src.read()
if img is None:
img = channel.copy()
else:
img = np.concatenate((img, channel.copy()), axis=0)
if read_post:
for name_ in post_names:
with rasterio.open(os.path.join(path, name_)) as src:
channel = src.read()
if img is None:
img = channel.copy()
else:
img = np.concatenate((img, channel.copy()), axis=0)
return img
def read_mask(path, cls='all'):
"""
Reading mask for a class in a 2-dimensional numpy array without georeference
:param path: string, path to the folder with the files, for example './ventura_train/'
:param cls: string, one of the classes present in the dataset (all, burned, non_burned).
"""
if cls not in ['all', 'burned', 'non_burned']:
raise ValueError('classes are: all, burned, non-burned')
name = os.path.join(path, cls + '.tif')
with rasterio.open(name) as src:
mask = src.read(1)
return mask
def save_img(img, name):
"""
Saves the image to the file
:param img: 2- or 3- dimensional numpy array, if 3-dimensional then channels first
if the array is 3-dimensional, the image saved is multi-channel with any given number of
channels (layers) (can save RGB) georeferencing is not supported
:param name: full path with name. Extension is not needed, anyway the file will be a .tif
"""
if img.ndim == 2:
layers = 1
w = img.shape[1]
h = img.shape[0]
elif img.ndim == 3:
layers = img.shape[0]
w = img.shape[2]
h = img.shape[1]
else:
raise ValueError('img must be 2- or 3-dimensional array')
if name[-4:] != '.tif' and name[-5:] != '.tiff':
name_ = name + '.tif'
else:
name_ = name
with rasterio.Env():
with rasterio.open(name_, 'w',
width=w, height=h,
driver='GTiff', count=layers,
dtype=str(img.dtype)) as dst:
if img.ndim == 2:
dst.write(img, 1)
else:
dst.write(img)