Skip to content

Commit

Permalink
Format with Black
Browse files Browse the repository at this point in the history
  • Loading branch information
hugovk committed Oct 25, 2020
1 parent 61562f0 commit 501a927
Show file tree
Hide file tree
Showing 27 changed files with 1,060 additions and 659 deletions.
2 changes: 1 addition & 1 deletion benchmarks/areal_caching_benchmark.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,4 +24,4 @@ def main():


if __name__ == "__main__":
main()
main()
26 changes: 18 additions & 8 deletions examples/fashion-mnist/train_pytorch.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,13 +49,19 @@ def test(model, test_loader):
labels = batch["labels"]
labels = labels.type(torch.LongTensor)
output = model(data)
test_loss += F.nll_loss(output, labels, reduction='sum').item()
test_loss += F.nll_loss(output, labels, reduction="sum").item()
pred = output.data.max(1, keepdim=True)[1]
correct += pred.eq(labels.data.view_as(pred)).sum()

test_loss /= len(test_loader.dataset)
print('Test set: Avg. loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset)))
print(
"Test set: Avg. loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n".format(
test_loss,
correct,
len(test_loader.dataset),
100.0 * correct / len(test_loader.dataset),
)
)


def main():
Expand All @@ -78,8 +84,12 @@ def main():
train_dataset = torch.utils.data.Subset(ds, range(60000))
test_dataset = torch.utils.data.Subset(ds, range(60000, 70000))

train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=BATCH_SIZE, collate_fn=ds.collate_fn)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=BATCH_SIZE, collate_fn=ds.collate_fn)
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=BATCH_SIZE, collate_fn=ds.collate_fn
)
test_loader = torch.utils.data.DataLoader(
test_dataset, batch_size=BATCH_SIZE, collate_fn=ds.collate_fn
)

model = CNN()
optimizer = optim.SGD(model.parameters(), lr=LEARNING_RATE, momentum=MOMENTUM)
Expand All @@ -92,15 +102,15 @@ def main():

# sanity check to see outputs of model
for batch in test_loader:
print("\nNamed Labels:",dataset.get_text(batch["named_labels"]))
print("\nLabels:",batch["labels"])
print("\nNamed Labels:", dataset.get_text(batch["named_labels"]))
print("\nLabels:", batch["labels"])

data = batch["data"]
data = torch.unsqueeze(data, 1)

output = model(data)
pred = output.data.max(1)[1]
print("\nPredictions:",pred)
print("\nPredictions:", pred)
break


Expand Down
30 changes: 23 additions & 7 deletions examples/fashion-mnist/train_tf_fit.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,16 +4,28 @@

def create_CNN():
model = tf.keras.Sequential()
model.add(tf.keras.layers.Conv2D(filters=64, kernel_size=2, padding='same', activation='relu', input_shape=(28, 28, 1)))
model.add(
tf.keras.layers.Conv2D(
filters=64,
kernel_size=2,
padding="same",
activation="relu",
input_shape=(28, 28, 1),
)
)
model.add(tf.keras.layers.MaxPooling2D(pool_size=2))
model.add(tf.keras.layers.Dropout(0.3))
model.add(tf.keras.layers.Conv2D(filters=32, kernel_size=2, padding='same', activation='relu'))
model.add(
tf.keras.layers.Conv2D(
filters=32, kernel_size=2, padding="same", activation="relu"
)
)
model.add(tf.keras.layers.MaxPooling2D(pool_size=2))
model.add(tf.keras.layers.Dropout(0.3))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(256, activation='relu'))
model.add(tf.keras.layers.Dense(256, activation="relu"))
model.add(tf.keras.layers.Dropout(0.5))
model.add(tf.keras.layers.Dense(10, activation='softmax'))
model.add(tf.keras.layers.Dense(10, activation="softmax"))
return model


Expand All @@ -33,7 +45,7 @@ def main():

# transform into Tensorflow dataset
# max_text_len is an optional argument that fixes the maximum length of text labels
ds = ds.to_tensorflow(max_text_len = 15)
ds = ds.to_tensorflow(max_text_len=15)

# converting ds so that it can be directly used in model.fit
ds = ds.map(lambda x: to_model_fit(x))
Expand All @@ -47,8 +59,12 @@ def main():

model = create_CNN()
# model.summary()
model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(train_dataset, epochs=EPOCHS, validation_data=test_dataset, validation_steps=1)
model.compile(
loss="sparse_categorical_crossentropy", optimizer="adam", metrics=["accuracy"]
)
model.fit(
train_dataset, epochs=EPOCHS, validation_data=test_dataset, validation_steps=1
)


if __name__ == "__main__":
Expand Down
29 changes: 21 additions & 8 deletions examples/fashion-mnist/train_tf_gradient_tape.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,16 +7,28 @@

def create_CNN():
model = tf.keras.Sequential()
model.add(tf.keras.layers.Conv2D(filters=64, kernel_size=2, padding='same', activation='relu', input_shape=(28, 28, 1)))
model.add(
tf.keras.layers.Conv2D(
filters=64,
kernel_size=2,
padding="same",
activation="relu",
input_shape=(28, 28, 1),
)
)
model.add(tf.keras.layers.MaxPooling2D(pool_size=2))
model.add(tf.keras.layers.Dropout(0.3))
model.add(tf.keras.layers.Conv2D(filters=32, kernel_size=2, padding='same', activation='relu'))
model.add(
tf.keras.layers.Conv2D(
filters=32, kernel_size=2, padding="same", activation="relu"
)
)
model.add(tf.keras.layers.MaxPooling2D(pool_size=2))
model.add(tf.keras.layers.Dropout(0.3))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(256, activation='relu'))
model.add(tf.keras.layers.Dense(256, activation="relu"))
model.add(tf.keras.layers.Dropout(0.5))
model.add(tf.keras.layers.Dense(10, activation='softmax'))
model.add(tf.keras.layers.Dense(10, activation="softmax"))
return model


Expand Down Expand Up @@ -61,7 +73,7 @@ def main():

# transform into Tensorflow dataset
# max_text_len is an optional argument that sets the maximum length of text labels, default is 30
ds = ds.to_tensorflow(max_text_len = 15)
ds = ds.to_tensorflow(max_text_len=15)

# Splitting back into the original train and test sets
train_dataset = ds.take(60000)
Expand All @@ -81,14 +93,15 @@ def main():

# sanity check to see outputs of model
for batch in test_dataset:
print("\nNamed Labels:",dataset.get_text(batch["named_labels"]))
print("\nLabels:",batch["labels"])
print("\nNamed Labels:", dataset.get_text(batch["named_labels"]))
print("\nLabels:", batch["labels"])

output = model(tf.expand_dims(batch["data"], axis=3), training=False)
print(type(output))
pred = np.argmax(output, axis=-1)
print("\nPredictions:",pred)
print("\nPredictions:", pred)
break


if __name__ == "__main__":
main()
27 changes: 15 additions & 12 deletions examples/fashion-mnist/upload.py
Original file line number Diff line number Diff line change
Expand Up @@ -46,17 +46,18 @@ def main():
dicts = []

# required to generate named labels
mapping = {0: "T-shirt/top",
1: "Trouser",
2: "Pullover",
3: "Dress",
4: "Coat",
5: "Sandal",
6: "Shirt",
7: "Sneaker",
8: "Bag",
9: "Ankle boot"
}
mapping = {
0: "T-shirt/top",
1: "Trouser",
2: "Pullover",
3: "Dress",
4: "Coat",
5: "Sandal",
6: "Shirt",
7: "Sneaker",
8: "Bag",
9: "Ankle boot",
}

for f in files:
images, labels = load_fashion_mnist(f, path="./data/fashion-mnist")
Expand All @@ -71,7 +72,9 @@ def main():
labels_t = tensor.from_array(labels, dtag="text")
named_labels_t = tensor.from_array(named_labels, dtag="text")

ds = dataset.from_tensors({"data": images_t, "labels": labels_t, "named_labels": named_labels_t})
ds = dataset.from_tensors(
{"data": images_t, "labels": labels_t, "named_labels": named_labels_t}
)
ds.store("mnist/fashion-mnist")


Expand Down
6 changes: 5 additions & 1 deletion examples/mnist/upload.py
Original file line number Diff line number Diff line change
Expand Up @@ -52,7 +52,11 @@ def main():
default="./data/mnist",
)
parser.add_argument(
"-o", "--output_name", type=str, help="Dataset output name", default="mnist",
"-o",
"--output_name",
type=str,
help="Dataset output name",
default="mnist",
)
args = parser.parse_args()
files = ["training", "testing"]
Expand Down
2 changes: 1 addition & 1 deletion hub/areal/tests/test_storage_tensor.py
Original file line number Diff line number Diff line change
Expand Up @@ -96,4 +96,4 @@ def main():


if __name__ == "__main__":
main()
main()
2 changes: 1 addition & 1 deletion hub/cli/auth.py
Original file line number Diff line number Diff line change
Expand Up @@ -71,4 +71,4 @@ def register(username, email, password):

AuthClient().register(username, email, password)
token = AuthClient().get_access_token(username, password)
TokenManager.set_token(token)
TokenManager.set_token(token)
6 changes: 4 additions & 2 deletions hub/cli/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,8 +42,10 @@ def get_proxy_command(proxy):
ssh_proxy = ""
if proxy and proxy != " " and proxy != "None" and proxy != "":
if check_program_exists("ncat"):
ssh_proxy = '-o "ProxyCommand=ncat --proxy-type socks5 --proxy {} %h %p"'.format(
proxy
ssh_proxy = (
'-o "ProxyCommand=ncat --proxy-type socks5 --proxy {} %h %p"'.format(
proxy
)
)
else:
raise HubException(
Expand Down
4 changes: 1 addition & 3 deletions hub/client/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -99,9 +99,7 @@ def check_response_status(self, response):
except Exception:
message = " "

logger.debug(
f'Error received: status code: {code}, message: "{message}"'
)
logger.debug(f'Error received: status code: {code}, message: "{message}"')
if code == 400:
raise BadRequestException(response)
elif response.status_code == 401:
Expand Down
4 changes: 3 additions & 1 deletion hub/client/hub_control.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,9 @@ def get_credentials(self):
self.auth_header = f"Bearer {token}"

r = self.request(
"GET", config.GET_CREDENTIALS_SUFFIX, endpoint=config.HUB_REST_ENDPOINT,
"GET",
config.GET_CREDENTIALS_SUFFIX,
endpoint=config.HUB_REST_ENDPOINT,
).json()

details = {
Expand Down
4 changes: 1 addition & 3 deletions hub/client/token_manager.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,9 +13,7 @@ def is_authenticated(cls):

@classmethod
def set_token(cls, token):
logger.debug(
f"Putting the key {token} into {config.TOKEN_FILE_PATH}."
)
logger.debug(f"Putting the key {token} into {config.TOKEN_FILE_PATH}.")
path = Path(config.TOKEN_FILE_PATH)
os.makedirs(path.parent, exist_ok=True)
with open(config.TOKEN_FILE_PATH, "w") as f:
Expand Down
1 change: 0 additions & 1 deletion hub/codec/image.py
Original file line number Diff line number Diff line change
Expand Up @@ -53,4 +53,3 @@ def decode(self, content: bytes) -> np.ndarray:
arr = np.asarray(img)
array[index] = arr
return array

1 change: 0 additions & 1 deletion hub/collections/_store_version.py
Original file line number Diff line number Diff line change
@@ -1,2 +1 @@
CURRENT_STORE_VERSION = 1

30 changes: 15 additions & 15 deletions hub/collections/client_manager.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,18 +36,18 @@ def init(
):
"""Initializes cluster either local or on the cloud
Parameters
----------
token: str
token provided by snark
cache: float
Amount on local memory to cache locally, default 2e9 (2GB)
cloud: bool
Should be run locally or on the cloud
n_workers: int
number of concurrent workers, default to1
threads_per_worker: int
Number of threads per each worker
Parameters
----------
token: str
token provided by snark
cache: float
Amount on local memory to cache locally, default 2e9 (2GB)
cloud: bool
Should be run locally or on the cloud
n_workers: int
number of concurrent workers, default to1
threads_per_worker: int
Number of threads per each worker
"""
print("initialized")
global _client
Expand All @@ -69,9 +69,9 @@ def init(
)

local_directory = os.path.join(
os.path.expanduser('~'),
'.activeloop',
'tmp',
os.path.expanduser("~"),
".activeloop",
"tmp",
)
if not os.path.exists(local_directory):
os.makedirs(local_directory)
Expand Down
10 changes: 4 additions & 6 deletions hub/collections/dataset/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,7 @@ def _meta_preprocess(meta: dict):


def generate(generator: DatasetGenerator, input) -> Dataset:
""" Generates dataset based on DatabaseGenerator class instance and iterable input
"""Generates dataset based on DatabaseGenerator class instance and iterable input
For every element in input runs generators __call__ function.
That function should return dict of numpy arrays containing single or multiple outputs for axis 0 of generating dataset
"""
Expand Down Expand Up @@ -80,8 +80,7 @@ def from_tensors(
citation: str = None,
howtoload: str = None,
) -> Dataset:
""" Creates a dataset from dict of tensors
"""
"""Creates a dataset from dict of tensors"""
return Dataset(
tensors,
metainfo={
Expand Down Expand Up @@ -109,7 +108,7 @@ def _meta_concat(metas: Tuple[Dict[str, object]]):


def concat(datasets: Iterable[Dataset]) -> Dataset:
""" Concats multiple datasets into one along axis 0
"""Concats multiple datasets into one along axis 0
This is equivalent to concat every tensor with the same key
"""
keys = [sorted(dataset._tensors.keys()) for dataset in datasets]
Expand Down Expand Up @@ -138,8 +137,7 @@ def concat(datasets: Iterable[Dataset]) -> Dataset:


def merge(datasets: Iterable[Dataset]) -> Dataset:
""" Merges multiple datasets that have distinct keys into one big datasets containing all keys
"""
"""Merges multiple datasets that have distinct keys into one big datasets containing all keys"""
tensors = {}
for dataset in datasets:
for tname, tvalue in dataset._tensors.items():
Expand Down
Loading

0 comments on commit 501a927

Please sign in to comment.