forked from baowenbo/DAIN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloss_function.py
86 lines (64 loc) · 3.1 KB
/
loss_function.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import sys
import os
import sys
import threading
import torch
from torch.autograd import Variable
from lr_scheduler import *
from torch.autograd import gradcheck
import numpy
def charbonier_loss(x,epsilon):
loss = torch.mean(torch.sqrt(x * x + epsilon * epsilon))
return loss
def negPSNR_loss(x,epsilon):
loss = torch.mean(torch.mean(torch.mean(torch.sqrt(x * x + epsilon * epsilon),dim=1),dim=1),dim=1)
return torch.mean(-torch.log(1.0/loss) /100.0)
def tv_loss(x,epsilon):
loss = torch.mean( torch.sqrt(
(x[:, :, :-1, :-1] - x[:, :, 1:, :-1]) ** 2 +
(x[:, :, :-1, :-1] - x[:, :, :-1, 1:]) ** 2 + epsilon *epsilon
)
)
return loss
def gra_adap_tv_loss(flow, image, epsilon):
w = torch.exp( - torch.sum( torch.abs(image[:,:,:-1, :-1] - image[:,:,1:, :-1]) +
torch.abs(image[:,:,:-1, :-1] - image[:,:,:-1, 1:]), dim = 1))
tv = torch.sum(torch.sqrt((flow[:, :, :-1, :-1] - flow[:, :, 1:, :-1]) ** 2 + (flow[:, :, :-1, :-1] - flow[:, :, :-1, 1:]) ** 2 + epsilon *epsilon) ,dim=1)
loss = torch.mean( w * tv )
return loss
def smooth_loss(x,epsilon):
loss = torch.mean(
torch.sqrt(
(x[:,:,:-1,:-1] - x[:,:,1:,:-1]) **2 +
(x[:,:,:-1,:-1] - x[:,:,:-1,1:]) **2+ epsilon**2
)
)
return loss
def motion_sym_loss(offset, epsilon, occlusion = None):
if occlusion == None:
# return torch.mean(torch.sqrt( (offset[:,:2,...] + offset[:,2:,...])**2 + epsilon **2))
return torch.mean(torch.sqrt( (offset[0] + offset[1])**2 + epsilon **2))
else:
# TODO: how to design the occlusion aware offset symmetric loss?
# return torch.mean(torch.sqrt((offset[:,:2,...] + offset[:,2:,...])**2 + epsilon **2))
return torch.mean(torch.sqrt((offset[0] + offset[1])**2 + epsilon **2))
def part_loss(diffs, offsets, occlusions, images, epsilon, use_negPSNR=False):
if use_negPSNR:
pixel_loss = [negPSNR_loss(diff, epsilon) for diff in diffs]
else:
pixel_loss = [charbonier_loss(diff, epsilon) for diff in diffs]
#offset_loss = [tv_loss(offset[0], epsilon) + tv_loss(offset[1], epsilon) for offset in
# offsets]
if offsets[0][0] is not None:
offset_loss = [gra_adap_tv_loss(offset[0],images[0], epsilon) + gra_adap_tv_loss(offset[1], images[1], epsilon) for offset in
offsets]
else:
offset_loss = [Variable(torch.zeros(1).cuda())]
# print(torch.max(occlusions[0]))
# print(torch.min(occlusions[0]))
# print(torch.mean(occlusions[0]))
# occlusion_loss = [smooth_loss(occlusion, epsilon) + charbonier_loss(occlusion - 0.5, epsilon) for occlusion in occlusions]
# occlusion_loss = [smooth_loss(occlusion, epsilon) + charbonier_loss(occlusion[:, 0, ...] - occlusion[:, 1, ...], epsilon) for occlusion in occlusions]
sym_loss = [motion_sym_loss(offset,epsilon=epsilon) for offset in offsets]
# sym_loss = [ motion_sym_loss(offset,occlusion) for offset,occlusion in zip(offsets,occlusions)]
return pixel_loss, offset_loss, sym_loss