❗️ Forked repository of CCIP contracts (version 2.8.0 release) that includes modifications for developing custom TokenPool contracts tailored for the GHO cross-chain strategy. All relevant code and tests are located in the GHO pools directory.
Chainlink expands the capabilities of smart contracts by enabling access to real-world data and off-chain computation while maintaining the security and reliability guarantees inherent to blockchain technology.
This repo contains the Chainlink core node and contracts. The core node is the bundled binary available to be run by node operators participating in a decentralized oracle network. All major release versions have pre-built docker images available for download from the Chainlink dockerhub. If you are interested in contributing please see our contribution guidelines. If you are here to report a bug or request a feature, please check currently open Issues. For more information about how to get started with Chainlink, check our official documentation. Resources for Solidity developers can be found in the Chainlink Hardhat Box.
Chainlink has an active and ever growing community. Discord is the primary communication channel used for day to day communication, answering development questions, and aggregating Chainlink related content. Take a look at the community docs for more information regarding Chainlink social accounts, news, and networking.
- Install Go 1.21.1, and add your GOPATH's bin directory to your PATH
- Example Path for macOS
export PATH=$GOPATH/bin:$PATH
&export GOPATH=/Users/$USER/go
- Example Path for macOS
- Install NodeJS v16 & pnpm via npm.
- It might be easier long term to use nvm to switch between node versions for different projects. For example, assuming $NODE_VERSION was set to a valid version of NodeJS, you could run:
nvm install $NODE_VERSION && nvm use $NODE_VERSION
- It might be easier long term to use nvm to switch between node versions for different projects. For example, assuming $NODE_VERSION was set to a valid version of NodeJS, you could run:
- Install Postgres (>= 11.x and <= 15.x).
- You should configure Postgres to use SSL connection (or for testing you can set
?sslmode=disable
in your Postgres query string).
- You should configure Postgres to use SSL connection (or for testing you can set
- Ensure you have Python 3 installed (this is required by solc-select which is needed to compile solidity contracts)
- Download Chainlink:
git clone https://github.com/smartcontractkit/chainlink && cd chainlink
- Build and install Chainlink:
make install
- Run the node:
chainlink help
For the latest information on setting up a development environment, see the Development Setup Guide.
Native builds on the Apple Silicon should work out of the box, but the Docker image requires more consideration.
$ docker build . -t chainlink-develop:latest -f ./core/chainlink.Dockerfile
In order to run the Chainlink node you must have access to a running Ethereum node with an open websocket connection. Any Ethereum based network will work once you've configured the chain ID. Ethereum node versions currently tested and supported:
[Officially supported]
- Parity/Openethereum (NOTE: Parity is deprecated and support for this client may be removed in future)
- Geth
[Supported but broken] These clients are supported by Chainlink, but have bugs that prevent Chainlink from working reliably on these execution clients.
- Nethermind Blocking issues:
- Besu Blocking issues:
- Erigon Blocking issues:
We cannot recommend specific version numbers for ethereum nodes since the software is being continually updated, but you should usually try to run the latest version available.
NOTE: By default, chainlink will run in TLS mode. For local development you can disable this by using a dev build
using make chainlink-dev
and setting the TOML fields:
[WebServer]
SecureCookies = false
TLS.HTTPSPort = 0
[Insecure]
DevWebServer = true
Alternatively, you can generate self signed certificates using tools/bin/self-signed-certs
or manually.
To start your Chainlink node, simply run:
chainlink node start
By default this will start on port 6688. You should be able to access the UI at http://localhost:6688/.
Chainlink provides a remote CLI client as well as a UI. Once your node has started, you can open a new terminal window to use the CLI. You will need to log in to authorize the client first:
chainlink admin login
(You can also set ADMIN_CREDENTIALS_FILE=/path/to/credentials/file
in future if you like, to avoid having to login again).
Now you can view your current jobs with:
chainlink jobs list
To find out more about the Chainlink CLI, you can always run chainlink help
.
Check out the doc pages on Jobs to learn more about how to create Jobs.
Node configuration is managed by a combination of environment variables and direct setting via API/UI/CLI.
Check the official documentation for more information on how to configure your node.
External adapters are what make Chainlink easily extensible, providing simple integration of custom computations and specialized APIs. A Chainlink node communicates with external adapters via a simple REST API.
For more information on creating and using external adapters, please see our external adapters page.
make mockery
Using the make
command will install the correct version.
- Build contracts:
pushd contracts
pnpm i
pnpm compile:native
popd
- Generate and compile static assets:
go generate ./...
- Prepare your development environment:
export CL_DATABASE_URL=postgresql://127.0.0.1:5432/chainlink_test?sslmode=disable
Note: Other environment variables should not be set for all tests to pass
- Drop/Create test database and run migrations:
make testdb
If you do end up modifying the migrations for the database, you will need to rerun
- Run tests:
go test ./...
- The
parallel
flag can be used to limit CPU usage, for running tests in the background (-parallel=4
) - the default isGOMAXPROCS
- The
p
flag can be used to limit the number of packages tested concurrently, if they are interferring with one another (-p=1
) - The
-short
flag skips tests which depend on the database, for quickly spot checking simpler tests in around one minute
As of Go 1.1, the runtime includes a data race detector, enabled with the -race
flag. This is used in CI via the
tools/bin/go_core_race_tests
script. If the action detects a race, the artifact on the summary page will include
race.*
files with detailed stack traces.
It will not issue false positives, so take its warnings seriously.
For local, targeted race detection, you can run:
GORACE="log_path=$PWD/race" go test -race ./core/path/to/pkg -count 10
GORACE="log_path=$PWD/race" go test -race ./core/path/to/pkg -count 100 -run TestFooBar/sub_test
https://go.dev/doc/articles/race_detector
As of Go 1.18, fuzz tests func FuzzXXX(*testing.F)
are included as part of the normal test suite, so existing cases are executed with go test
.
Additionally, you can run active fuzzing to search for new cases:
go test ./pkg/path -run=XXX -fuzz=FuzzTestName
This repository contains three Go modules:
flowchart RL
github.com/smartcontractkit/chainlink/v2
github.com/smartcontractkit/chainlink/integration-tests --> github.com/smartcontractkit/chainlink/v2
github.com/smartcontractkit/chainlink/core/scripts --> github.com/smartcontractkit/chainlink/v2
The integration-tests
and core/scripts
modules import the root module using a relative replace in their go.mod
files,
so dependency changes in the root go.mod
often require changes in those modules as well. After making a change, go mod tidy
can be run on all three modules using:
make gomodtidy
Inside the contracts/
directory:
- Install dependencies:
pnpm i
- Run tests:
pnpm test
NOTE: Chainlink is currently in the process of migrating to Foundry and contains both Foundry and Hardhat tests in some versions. More information can be found here: Chainlink Foundry Documentation. Any 't.sol' files associated with Foundry tests, contained within the src directories will be ignored by Hardhat.
Go generate is used to generate mocks in this project. Mocks are generated with mockery and live in core/internal/mocks.
A shell.nix is provided for use with the Nix package manager, with optional flakes support. It defines a declarative, reproducible development environment. Flakes version use deterministic, frozen (flake.lock
) dependencies, while non-flakes shell will use your channel's packages versions.
To use it:
- Install nix package manager in your system.
- Optionally, enable flakes support
- Run
nix-shell
. You will be put in shell containing all the dependencies.
- To use the flakes version, run
nix develop
instead ofnix-shell
. Optionally,nix develop --command $SHELL
will make use of your current shell instead of the default (bash). - You can use
direnv
to enable it automatically whencd
-ing into the folder; for that, enable nix-direnv anduse nix
oruse flake
on it.
- Create a local postgres database:
mkdir -p $PGDATA && cd $PGDATA/
initdb
pg_ctl -l postgres.log -o "--unix_socket_directories='$PWD'" start
createdb chainlink_test -h localhost
createuser --superuser --password chainlink -h localhost
# then type a test password, e.g.: chainlink, and set it in shell.nix CL_DATABASE_URL
- When re-entering project, you can restart postgres:
cd $PGDATA; pg_ctl -l postgres.log -o "--unix_socket_directories='$PWD'" start
Now you can run tests or compile code as usual. - When you're done, stop it:
cd $PGDATA; pg_ctl -o "--unix_socket_directories='$PWD'" stop
For more tips on how to build and test Chainlink, see our development tips page.
Contributions are welcome to Chainlink's source code.
Please check out our contributing guidelines for more details.
Thank you!