forked from GOATmessi8/RFBNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
data_augment.py
246 lines (190 loc) · 7.28 KB
/
data_augment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
"""Data augmentation functionality. Passed as callable transformations to
Dataset classes.
The data augmentation procedures were interpreted from @weiliu89's SSD paper
http://arxiv.org/abs/1512.02325
"""
import torch
from torchvision import transforms
import cv2
import numpy as np
import random
import math
from utils.box_utils import matrix_iou
# import torch_transforms
def _crop(image, boxes, labels):
height, width, _ = image.shape
if len(boxes)== 0:
return image, boxes, labels
while True:
mode = random.choice((
None,
(0.1, None),
(0.3, None),
(0.5, None),
(0.7, None),
(0.9, None),
(None, None),
))
if mode is None:
return image, boxes, labels
min_iou, max_iou = mode
if min_iou is None:
min_iou = float('-inf')
if max_iou is None:
max_iou = float('inf')
for _ in range(50):
scale = random.uniform(0.3,1.)
min_ratio = max(0.5, scale*scale)
max_ratio = min(2, 1. / scale / scale)
ratio = math.sqrt(random.uniform(min_ratio, max_ratio))
w = int(scale * ratio * width)
h = int((scale / ratio) * height)
l = random.randrange(width - w)
t = random.randrange(height - h)
roi = np.array((l, t, l + w, t + h))
iou = matrix_iou(boxes, roi[np.newaxis])
if not (min_iou <= iou.min() and iou.max() <= max_iou):
continue
image_t = image[roi[1]:roi[3], roi[0]:roi[2]]
centers = (boxes[:, :2] + boxes[:, 2:]) / 2
mask = np.logical_and(roi[:2] < centers, centers < roi[2:]) \
.all(axis=1)
boxes_t = boxes[mask].copy()
labels_t = labels[mask].copy()
if len(boxes_t) == 0:
continue
boxes_t[:, :2] = np.maximum(boxes_t[:, :2], roi[:2])
boxes_t[:, :2] -= roi[:2]
boxes_t[:, 2:] = np.minimum(boxes_t[:, 2:], roi[2:])
boxes_t[:, 2:] -= roi[:2]
return image_t, boxes_t,labels_t
def _distort(image):
def _convert(image, alpha=1, beta=0):
tmp = image.astype(float) * alpha + beta
tmp[tmp < 0] = 0
tmp[tmp > 255] = 255
image[:] = tmp
image = image.copy()
if random.randrange(2):
_convert(image, beta=random.uniform(-32, 32))
if random.randrange(2):
_convert(image, alpha=random.uniform(0.5, 1.5))
image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
if random.randrange(2):
tmp = image[:, :, 0].astype(int) + random.randint(-18, 18)
tmp %= 180
image[:, :, 0] = tmp
if random.randrange(2):
_convert(image[:, :, 1], alpha=random.uniform(0.5, 1.5))
image = cv2.cvtColor(image, cv2.COLOR_HSV2BGR)
return image
def _expand(image, boxes,fill, p):
if random.random() > p:
return image, boxes
height, width, depth = image.shape
for _ in range(50):
scale = random.uniform(1,4)
min_ratio = max(0.5, 1./scale/scale)
max_ratio = min(2, scale*scale)
ratio = math.sqrt(random.uniform(min_ratio, max_ratio))
ws = scale*ratio
hs = scale/ratio
if ws < 1 or hs < 1:
continue
w = int(ws * width)
h = int(hs * height)
left = random.randint(0, w - width)
top = random.randint(0, h - height)
boxes_t = boxes.copy()
boxes_t[:, :2] += (left, top)
boxes_t[:, 2:] += (left, top)
expand_image = np.empty(
(h, w, depth),
dtype=image.dtype)
expand_image[:, :] = fill
expand_image[top:top + height, left:left + width] = image
image = expand_image
return image, boxes_t
def _mirror(image, boxes):
_, width, _ = image.shape
if random.randrange(2):
image = image[:, ::-1]
boxes = boxes.copy()
boxes[:, 0::2] = width - boxes[:, 2::-2]
return image, boxes
def preproc_for_test(image, insize, mean):
interp_methods = [cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_NEAREST, cv2.INTER_LANCZOS4]
interp_method = interp_methods[random.randrange(5)]
image = cv2.resize(image, (insize, insize),interpolation=interp_method)
image = image.astype(np.float32)
image -= mean
return image.transpose(2, 0, 1)
class preproc(object):
def __init__(self, resize, rgb_means, p):
self.means = rgb_means
self.resize = resize
self.p = p
def __call__(self, image, targets):
boxes = targets[:,:-1].copy()
labels = targets[:,-1].copy()
if len(boxes) == 0:
#boxes = np.empty((0, 4))
targets = np.zeros((1,5))
image = preproc_for_test(image, self.resize, self.means)
return torch.from_numpy(image), targets
image_o = image.copy()
targets_o = targets.copy()
height_o, width_o, _ = image_o.shape
boxes_o = targets_o[:,:-1]
labels_o = targets_o[:,-1]
boxes_o[:, 0::2] /= width_o
boxes_o[:, 1::2] /= height_o
labels_o = np.expand_dims(labels_o,1)
targets_o = np.hstack((boxes_o,labels_o))
image_t, boxes, labels = _crop(image, boxes, labels)
image_t = _distort(image_t)
image_t, boxes = _expand(image_t, boxes, self.means, self.p)
image_t, boxes = _mirror(image_t, boxes)
#image_t, boxes = _mirror(image, boxes)
height, width, _ = image_t.shape
image_t = preproc_for_test(image_t, self.resize, self.means)
boxes = boxes.copy()
boxes[:, 0::2] /= width
boxes[:, 1::2] /= height
b_w = (boxes[:, 2] - boxes[:, 0])*1.
b_h = (boxes[:, 3] - boxes[:, 1])*1.
mask_b= np.minimum(b_w, b_h) > 0.01
boxes_t = boxes[mask_b]
labels_t = labels[mask_b].copy()
if len(boxes_t)==0:
image = preproc_for_test(image_o, self.resize, self.means)
return torch.from_numpy(image),targets_o
labels_t = np.expand_dims(labels_t,1)
targets_t = np.hstack((boxes_t,labels_t))
return torch.from_numpy(image_t), targets_t
class BaseTransform(object):
"""Defines the transformations that should be applied to test PIL image
for input into the network
dimension -> tensorize -> color adj
Arguments:
resize (int): input dimension to SSD
rgb_means ((int,int,int)): average RGB of the dataset
(104,117,123)
swap ((int,int,int)): final order of channels
Returns:
transform (transform) : callable transform to be applied to test/val
data
"""
def __init__(self, resize, rgb_means, swap=(2, 0, 1)):
self.means = rgb_means
self.resize = resize
self.swap = swap
# assume input is cv2 img for now
def __call__(self, img):
interp_methods = [cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_NEAREST, cv2.INTER_LANCZOS4]
interp_method = interp_methods[0]
img = cv2.resize(np.array(img), (self.resize,
self.resize),interpolation = interp_method).astype(np.float32)
img -= self.means
img = img.transpose(self.swap)
return torch.from_numpy(img)