-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathufifo.v
477 lines (434 loc) · 12.1 KB
/
ufifo.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
////////////////////////////////////////////////////////////////////////////////
//
// Filename: ufifo.v
// {{{
// Project: wbuart32, a full featured UART with simulator
//
// Purpose: A synchronous data FIFO, designed for supporting the Wishbone
// UART. Particular features include the ability to read and
// write on the same clock, while maintaining the correct output FIFO
// parameters. Two versions of the FIFO exist within this file, separated
// by the RXFIFO parameter's value. One, where RXFIFO = 1, produces status
// values appropriate for reading and checking a read FIFO from logic,
// whereas the RXFIFO = 0 applies to writing to the FIFO from bus logic
// and reading it automatically any time the transmit UART is idle.
//
// Creator: Dan Gisselquist, Ph.D.
// Gisselquist Technology, LLC
//
////////////////////////////////////////////////////////////////////////////////
// }}}
// Copyright (C) 2015-2024, Gisselquist Technology, LLC
// {{{
// This program is free software (firmware): you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or (at
// your option) any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License along
// with this program. (It's in the $(ROOT)/doc directory. Run make with no
// target there if the PDF file isn't present.) If not, see
// <http://www.gnu.org/licenses/> for a copy.
// }}}
// License: GPL, v3, as defined and found on www.gnu.org,
// {{{
// http://www.gnu.org/licenses/gpl.html
//
////////////////////////////////////////////////////////////////////////////////
//
//
`default_nettype none
// }}}
module ufifo #(
// {{{
parameter BW=8, // Byte/data width
parameter [3:0] LGFLEN=4,
parameter [0:0] RXFIFO=1'b1,
localparam FLEN=(1<<LGFLEN)
// }}}
) (
// {{{
input wire i_clk, i_reset,
input wire i_wr,
input wire [(BW-1):0] i_data,
output wire o_empty_n, // True if something is in FIFO
input wire i_rd,
output wire [(BW-1):0] o_data,
output wire [15:0] o_status,
output wire o_err
// }}}
);
// Signal declarations
// {{{
reg [(BW-1):0] fifo[0:(FLEN-1)];
reg [(BW-1):0] r_data, last_write;
reg [(LGFLEN-1):0] wr_addr, rd_addr, r_next;
reg will_overflow, will_underflow;
reg osrc;
wire [(LGFLEN-1):0] w_waddr_plus_one, w_waddr_plus_two;
wire w_write, w_read;
reg [(LGFLEN-1):0] r_fill;
wire [3:0] lglen;
wire w_half_full;
reg [9:0] w_fill;
// }}}
assign w_write = (i_wr && (!will_overflow || i_rd));
assign w_read = (i_rd && o_empty_n);
assign w_waddr_plus_two = wr_addr + 2;
assign w_waddr_plus_one = wr_addr + 1;
////////////////////////////////////////////////////////////////////////
//
// Write half
// {{{
////////////////////////////////////////////////////////////////////////
//
//
// will_overflow
// {{{
initial will_overflow = 1'b0;
always @(posedge i_clk)
if (i_reset)
will_overflow <= 1'b0;
else if (i_rd)
will_overflow <= (will_overflow)&&(i_wr);
else if (w_write)
will_overflow <= (will_overflow)||(w_waddr_plus_two == rd_addr);
else if (w_waddr_plus_one == rd_addr)
will_overflow <= 1'b1;
// }}}
// wr_addr
// {{{
initial wr_addr = 0;
always @(posedge i_clk)
if (i_reset)
wr_addr <= { (LGFLEN){1'b0} };
else if (w_write)
wr_addr <= w_waddr_plus_one;
// }}}
// Write to the FIFO
// {{{
always @(posedge i_clk)
if (w_write) // Write our new value regardless--on overflow or not
fifo[wr_addr] <= i_data;
// }}}
// }}}
////////////////////////////////////////////////////////////////////////
//
// Read half
// {{{
////////////////////////////////////////////////////////////////////////
//
//
// Notes
// {{{
// Following a read, the next sample will be available on the
// next clock
// Clock ReadCMD ReadAddr Output
// 0 0 0 fifo[0]
// 1 1 0 fifo[0]
// 2 0 1 fifo[1]
// 3 0 1 fifo[1]
// 4 1 1 fifo[1]
// 5 1 2 fifo[2]
// 6 0 3 fifo[3]
// 7 0 3 fifo[3]
// }}}
// will_underflow
// {{{
initial will_underflow = 1'b1;
always @(posedge i_clk)
if (i_reset)
will_underflow <= 1'b1;
else if (i_wr)
will_underflow <= 1'b0;
else if (w_read)
will_underflow <= (will_underflow)||(r_next == wr_addr);
// }}}
// rd_addr, r_next
// {{{
// Don't report FIFO underflow errors. These'll be caught elsewhere
// in the system, and the logic below makes it hard to reset them.
// We'll still report FIFO overflow, however.
//
initial rd_addr = 0;
initial r_next = 1;
always @(posedge i_clk)
if (i_reset)
begin
rd_addr <= 0;
r_next <= 1;
end else if (w_read)
begin
rd_addr <= rd_addr + 1;
r_next <= rd_addr + 2;
end
// }}}
// Read from the FIFO
// {{{
always @(posedge i_clk)
if (w_read)
r_data <= fifo[r_next[LGFLEN-1:0]];
// }}}
// last_write -- for bypassing the memory read
// {{{
always @(posedge i_clk)
if (i_wr && (!o_empty_n || (w_read && r_next == wr_addr)))
last_write <= i_data;
// }}}
// osrc
// {{{
initial osrc = 1'b0;
always @(posedge i_clk)
if (i_reset)
osrc <= 1'b0;
else if (i_wr && (!o_empty_n || (w_read && r_next == wr_addr)))
osrc <= 1'b1;
else if (i_rd)
osrc <= 1'b0;
// }}}
assign o_data = (osrc) ? last_write : r_data;
// }}}
////////////////////////////////////////////////////////////////////////
//
// Status signals and flags
// {{{
////////////////////////////////////////////////////////////////////////
//
//
// r_fill
// {{{
// If this is a receive FIFO, the FIFO count that matters is the number
// of values yet to be read. If instead this is a transmit FIFO, then
// the FIFO count that matters is the number of empty positions that
// can still be filled before the FIFO is full.
//
// Adjust for these differences here.
generate if (RXFIFO)
begin : RXFIFO_FILL
// {{{
// Calculate the number of elements in our FIFO
//
// Although used for receive, this is actually the more
// generic answer--should you wish to use the FIFO in
// another context.
initial r_fill = 0;
always @(posedge i_clk)
if (i_reset)
r_fill <= 0;
else case({ w_write, w_read })
2'b01: r_fill <= r_fill - 1'b1;
2'b10: r_fill <= r_fill + 1'b1;
default: begin end
endcase
// }}}
end else begin : TXFIFO_FILL
// {{{
// Calculate the number of empty elements in our FIFO
//
// This is the number you could send to the FIFO
// if you wanted to.
initial r_fill = -1;
always @(posedge i_clk)
if (i_reset)
r_fill <= -1;
else case({ w_write, w_read })
2'b01: r_fill <= r_fill + 1'b1;
2'b10: r_fill <= r_fill - 1'b1;
default: begin end
endcase
// }}}
end endgenerate
// }}}
// o_err -- Flag any overflows
// {{{
assign o_err = (i_wr && !w_write);
// }}}
// o_status
// {{{
assign lglen = LGFLEN;
always @(*)
begin
w_fill = 0;
w_fill[(LGFLEN-1):0] = r_fill;
end
assign w_half_full = r_fill[(LGFLEN-1)];
assign o_status = {
// Our status includes a 4'bit nibble telling anyone reading
// this the size of our FIFO. The size is then given by
// 2^(this value). Hence a 4'h4 in this position means that the
// FIFO has 2^4 or 16 values within it.
lglen,
// The FIFO fill--for a receive FIFO the number of elements
// left to be read, and for a transmit FIFO the number of
// empty elements within the FIFO that can yet be filled.
w_fill,
// A '1' here means a half FIFO length can be read (receive
// FIFO) or written to (not a receive FIFO). If one, a
// halfway interrupt can be sent indicating a half of a FIFOs
// operationw (either transmit or receive) will be successful.
w_half_full,
// A '1' here means the FIFO can be read from (if it is a
// receive FIFO), or be written to (if it isn't). An interrupt
// may be sourced from this bit, indicating that at least one
// operation will be successful.
(RXFIFO!=0)?!will_underflow:!will_overflow
};
// }}}
assign o_empty_n = !will_underflow;
// }}}
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
//
// Formal property section
// {{{
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
`ifdef FORMAL
reg f_past_valid;
initial f_past_valid = 0;
always @(posedge i_clk)
f_past_valid <= 1;
////////////////////////////////////////////////////////////////////////
//
// Pointer checks
// {{{
////////////////////////////////////////////////////////////////////////
//
//
reg [LGFLEN-1:0] f_fill;
wire [LGFLEN-1:0] f_raddr_plus_one;
always @(*)
f_fill = wr_addr - rd_addr;
always @(*)
assert(will_underflow == (f_fill == 0));
always @(*)
assert(will_overflow == (&f_fill));
assign f_raddr_plus_one = rd_addr + 1;
always @(*)
assert(f_raddr_plus_one == r_next);
always @(*)
if (will_underflow)
begin
assert(!w_read);
assert(!osrc);
end
always @(posedge i_clk)
if (RXFIFO)
assert(r_fill == f_fill);
else
assert(r_fill == (~f_fill));
// }}}
////////////////////////////////////////////////////////////////////////
//
// Twin write check
// {{{
////////////////////////////////////////////////////////////////////////
//
//
`ifdef UFIFO
// Declare two arbitrary addresses and data values
// {{{
(* anyconst *) reg [LGFLEN-1:0] f_const_addr;
(* anyconst *) reg [BW-1:0] f_const_data, f_const_second;
reg [LGFLEN-1:0] f_next_addr;
reg [1:0] f_state;
reg f_first_in_fifo, f_second_in_fifo;
reg [LGFLEN-1:0] f_distance_to_first, f_distance_to_second;
// }}}
// Determine if those data values are at their addresses in the FIFO
// {{{
always @(*)
begin
f_next_addr = f_const_addr + 1;
f_distance_to_first = f_const_addr - rd_addr;
f_distance_to_second = f_next_addr - rd_addr;
f_first_in_fifo = (f_distance_to_first < f_fill)
&& !will_underflow
&& (fifo[f_const_addr] == f_const_data);
f_second_in_fifo = (f_distance_to_second < f_fill)
&& !will_underflow
&& (fifo[f_next_addr] == f_const_second);
end
// }}}
// Generate the twin-write state machine
// {{{
initial f_state = 2'b00;
always @(posedge i_clk)
if (i_reset)
f_state <= 2'b00;
else case(f_state)
2'b00: if (w_write &&(wr_addr == f_const_addr)
&&(i_data == f_const_data))
f_state <= 2'b01;
2'b01: if (w_read && (rd_addr == f_const_addr))
f_state <= 2'b00;
else if (w_write && (wr_addr == f_next_addr))
f_state <= (i_data == f_const_second) ? 2'b10 : 2'b00;
2'b10: if (w_read && (rd_addr == f_const_addr))
f_state <= 2'b11;
2'b11: if (w_read)
f_state <= 2'b00;
endcase
// }}}
// Check conditions against the twin write state machine
// {{{
always @(*)
case(f_state)
2'b00: begin end
2'b01: begin
assert(!will_underflow);
assert(f_first_in_fifo);
assert(!f_second_in_fifo);
assert(wr_addr == f_next_addr);
assert(fifo[f_const_addr] == f_const_data);
if (rd_addr == f_const_addr)
assert(o_data == f_const_data);
end
2'b10: begin
assert(f_first_in_fifo);
assert(f_second_in_fifo);
end
2'b11: begin
assert(f_second_in_fifo);
assert(rd_addr == f_next_addr);
assert(o_data == f_const_second);
end
endcase
// }}}
`endif
// }}}
////////////////////////////////////////////////////////////////////////
//
// Cover checks
// {{{
////////////////////////////////////////////////////////////////////////
//
//
reg cvr_filled;
always @(*)
cover(o_empty_n);
// Can't cover the FIFO being full when the FIFO is a member of another
// components--so we only check that we can be filled here
`ifdef UFIFO
always @(*)
cover(o_err);
initial cvr_filled = 0;
always @(posedge i_clk)
if (i_reset)
cvr_filled <= 0;
else if (&f_fill[LGFLEN-1:0])
cvr_filled <= 1;
always @(*)
cover(cvr_filled && !o_empty_n);
`endif // UFIFO
// }}}
`endif
// }}}
endmodule