-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaudio_feature_visualizations.py
38 lines (33 loc) · 1.06 KB
/
audio_feature_visualizations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import matplotlib.pyplot as plt
import librosa
import librosa.display
# Load the audio file
filepath = "../Datasets/RAVDESS/Audio_Speech_Actors_01-24/Actor_01/03-01-01-01-01-01-01.wav"
vector, sr = librosa.load(filepath, duration=3, res_type="kaiser_best", sr=48000)
# Visualize the audio signal
plt.plot(vector)
plt.xlabel("Sample Rate")
plt.ylabel("Amplitude")
plt.title("Audio Signal")
plt.show()
# Visualize the MFFCs
mfccs = librosa.feature.mfcc(y=vector, sr=sr, n_mfcc=40)
fig, ax = plt.subplots()
img = librosa.display.specshow(mfccs, x_axis='time', ax=ax)
fig.colorbar(img, ax=ax)
ax.set(title='Mel-frequency cepstral coefficients')
plt.show()
# Visualize the ZCR
ZCR = librosa.feature.zero_crossing_rate(y=vector)
fig, ax = plt.subplots()
img = librosa.display.specshow(ZCR, x_axis='time', ax=ax)
fig.colorbar(img, ax=ax)
ax.set(title='Zero Crossing Rate')
plt.show()
# Visualize the CC
CC = librosa.feature.chroma_cens(y=vector)
fig, ax = plt.subplots()
img = librosa.display.specshow(CC, x_axis='time', ax=ax)
fig.colorbar(img, ax=ax)
ax.set(title='Chroma Cens')
plt.show()