CUBIT: A High-resolution Infrastructure Defect Dataset Fully Evaluated with Autonomous Detection Framework
Submitted to International Conference on Acoustics, Speech, & Signal Processing
Learning-based visual inspection, integrated with unmanned robotic system, offers a more effective, efficient, and safer alternative for infrastructure inspection tasks that are traditionally heavily reliant on human labor. However, the potential of learning-based inspection methods remains limited due to the lack of publicly available, high-quality datasets. This paper presents CUBIT, a high-resolution defect detection dataset comprising more than
- The visualization of defect detection framework based on CUBIT dataset is illustrated below *, which encompasses the entire process: data collection by autonomous unmanned system; the baseline network integrated with our GIPFPP module; the output of defect detection results.
We enlarge the prediction results in the bottom right corner of framework images above. CUBIT dataset covers three infrastructure types: Building facade, Pavement, and Bridge, and aims for three types of defect: Crack, Spalling, and Moisture. Rectangles indicate the output prediction box (\textcolor{red}{Red} for \textbf{Crack}, \textcolor{pink}{Pink} for \textbf{Spalling}, and \textcolor{orange}{Orange} for \textbf{Moisture}) with inferred defect type and confidence score from YOLOv6-l trained on the training set of our proposed dataset.
Qualitative visualization of UAV-based real-world experiment is shown below On the left, our multi-UAVs inspection schematics is illustrated. On the right, the detection results of four direction façades of the building are displayed.